zoukankan      html  css  js  c++  java
  • [CSP-S模拟测试]:骆驼(模拟+构造)

    题目描述

      我们都熟悉走马步,现在我们定义一种新的移动方式——骆驼步,它在一个国际棋盘上的移动规则是这样的。

      以看出,骆驼步可以向八个方向走动,且不能走出棋盘范围。
      现在给出一个$N imes N$的棋盘,其中$N$是$5$的倍数。你需要从左上角出发,每步按照骆驼步的规则,经过每个格子恰好一次,且当你走了$N^2-1$步后,你离起点恰好只有一步的距离。
      请给出一种合法的方案。


    输入格式

    第一行有一个整数$N$,表示$N imes N$的棋盘


    输出格式

    如果无解,输出$"impossible"$
    否则,你输出一个$N imes N$的矩阵,其中$a_{i,j}$表示$(i,j)$是你经过的第$a_{i,j}$个格子。


    样例

    样例输入:

    10

    样例输出:

    1 52 29 8 51 28 9 50 37 16
    85 95 59 86 94 66 87 93 65 88
    40 19 100 39 18 76 38 17 77 49
    2 53 30 7 58 27 10 89 36 15
    84 96 60 75 99 67 72 92 64 71
    41 20 82 44 23 90 45 24 78 48
    3 54 31 6 57 26 11 68 35 14
    83 97 61 74 98 62 73 91 63 70
    42 21 81 43 22 80 46 25 79 47
    4 55 32 5 56 33 12 69 34 13


    数据范围与提示

    对于所有数据,保证$Nleqslant 1,000$且$N$是$5$的倍数。
    其中一个数据点$N=5$,占$20$分,剩余$16$个数据点,每个$5$分。


    题解

    $N$是$5$的倍数无形中提示着我们不可能有$"impossible"$的数据点。

    其中一个数据点$N=5$又提示着我们从这里入手。

    事实证明,在一个$5 imes 5$的格子里,从一个格子出发能终点可以是任意一个格子,那么可以考虑先预处理出来一些$5 imes 5$的走法,然后拼接起来。

    那么这时候分为两种情况:

      $alpha.N$是奇数。

      $eta.N$是偶数。

    对于情况$alpha$有这样一个构造方案:

    上图中白点为总的起点,灰点表示每一个$5 imes 5$的格子的起点,蓝点表示终点,黄点和红点分别表示最后两步。

    对于情况$eta$有这样一个构造方案:

    上图中白点为总的起点,灰点表示每一个$5 imes 5$的格子的起点,蓝点表示终点,红点表示最后一步。

    这样为题就简单多了,我们需要预处理七种$5 imes 5$的格子,然后按照如上方案构造即可。

    注意$N=5$需要特判

    时间复杂度:$Theta(n^2)$。

    期望得分:$100$分。

    实际得分:$100$分。


    代码时刻

    #include<bits/stdc++.h>
    using namespace std;
    int n;
    int Map[1001][1001],t;
    int base1[6][6]={0,0,0,0,0,0,0,1,6,11,-1,5,0,9,15,3,8,16,0,12,21,18,13,22,0,2,7,10,-1,4,0,19,14,23,20,17};
    int base2[6][6]={0,0,0,0,0,0,0,10,21,6,9,22,0,16,13,24,19,14,0,5,8,1,4,7,0,11,20,15,12,23,0,17,3,25,18,2};
    int base3[6][6]={0,0,0,0,0,0,0,18,10,24,17,9,0,13,21,7,12,22,0,5,16,1,4,25,0,19,11,23,20,8,0,14,3,6,15,2};
    int base4[6][6]={0,0,0,0,0,0,0,21,10,25,22,9,0,15,18,7,12,17,0,5,23,1,4,24,0,20,11,16,19,8,0,14,3,6,13,2};
    int base5[6][6]={0,0,0,0,0,0,0,18,5,24,19,6,0,10,21,16,9,22,0,25,13,1,4,14,0,17,8,23,20,7,0,11,3,15,12,2};
    int base6[6][6]={0,0,0,0,0,0,0,25,17,7,24,16,0,12,4,21,13,5,0,19,9,1,18,8,0,22,14,6,23,15,0,11,3,20,10,2};
    int base7[6][6]={0,0,0,0,0,0,0,1,6,13,21,5,0,11,19,3,8,18,0,14,22,-1,15,23,0,2,7,12,20,4,0,10,16,24,9,17};
    void up(int x,int y)
    {
    	x--;y--;
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[x*5+i][y*5+j]=base4[i][j]+t;
    	t+=25;
    }
    void down(int x,int y)
    {
    	x--;y--;
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[x*5+i][y*5+j]=base2[i][j]+t;
    	t+=25;
    }
    void right(int x,int y)
    {
    	x--;y--;
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[x*5+i][y*5+j]=base3[i][j]+t;
    	t+=25;
    }
    void left(int x,int y)
    {
    	x--;y--;
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[x*5+i][y*5+j]=base5[i][j]+t;
    	t+=25;
    }
    void work1()
    {
    	t=23;
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[i][j]=base1[i][j];
    	Map[4][4]=n*n-1;
    	Map[1][4]=n*n;
    	for(int i=2;i<n/5;i++)down(i,1);
    	right(n/5,1);
    	for(int i=n/5;i>2;i--)
    	{
    		if(i&1)
    		{
    			for(int j=2;j<n/5;j++)right(i,j);
    			up(i,n/5);
    		}
    		else
    		{
    			for(int j=n/5;j>2;j--)left(i,j);
    			up(i,2);
    		}
    	}
    	for(int i=n/5;i>2;i--)
    	{
    		if(i&1)
    		{
    			up(2,i);
    			left(1,i);
    		}
    		else
    		{
    			down(1,i);
    			left(2,i);
    		}
    	}
    	down(1,2);
    	for(int i=6;i<=10;i++)
    		for(int j=6;j<=10;j++)
    			Map[i][j]=base6[i-5][j-5]+t;
    }
    void work2()
    {
    	for(int i=1;i<=5;i++)
    		for(int j=1;j<=5;j++)
    			Map[i][j]=base7[i][j];
    	Map[3][3]=n*n;t=24;
    	for(int i=2;i<n/5;i++)down(i,1);
    	right(n/5,1);
    	for(int i=n/5;i>=2;i--)
    	{
    		for(int j=2;j<n/5;j++)right(i,j);
    		up(i,n/5);
    		i--;
    		for(int j=n/5;j>=3;j--)left(i,j);
    		up(i,2);
    	}
    	t-=25;left(1,2);
    }
    int main()
    {
    	scanf("%d",&n);
    	if(n==5){puts("1 9 19 2 10
    14 22 5 13 21
    7 17 25 8 18
    4 12 20 3 11
    15 23 6 16 24");return 0;}
    	if(n&1)work1();
    	else work2();
    	for(int i=1;i<=n;i++)
    	{
    		for(int j=1;j<=n;j++)
    			printf("%d ",Map[i][j]);
    		puts("");
    	}
    	return 0;
    }
    

    rp++

  • 相关阅读:
    【分布式事务】的一篇良心之作!
    如何保证缓存与数据库的数据一致性
    30多岁的大龄程序员,应该如何保持职场竞争力
    Kafka acks参数对消息持久化的影响
    Kafka 如何优化内存缓冲机制造成的频繁 GC 问题?
    Shell中的特殊符号(special characters)和含义
    Bash中的一些常用的数组相关的特殊语法(array syntax)
    一站式搞定Bash脚本的参数处理问题
    Bash脚本set命令教程
    Bash中的eval命令
  • 原文地址:https://www.cnblogs.com/wzc521/p/11664720.html
Copyright © 2011-2022 走看看