zoukankan      html  css  js  c++  java
  • 【CF1218E】Product Tuples

    题目大意:给定一个长度为 (N) 的序列,求从序列中选出 (K) 个数的集合乘积之和是多少。

    题解:
    由于是选出 (K) 个数字组成的集合,可知对于要计算的 (K) 元组来说是没有标号的,而元组是由序列中 (N) 个数字组合而成的。因此,将要求的元组看作组合对象,该组合对象是由 (N) 个不同种类的组合对象组成的,且组合对象是没有标号的,因此采用普通生成函数计算即可。
    对于第 (i) 个数的普通生成函数为 $$(1 + a_ix)$$,因此,原组合对象的生成函数是$$prodlimits_{i = 1}^{n}(1+a_ix)$$。可以通过分治乘法来进行计算,时间复杂度为 (O(nlogn))

    代码如下

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    const int mod = 998244353, g = 3, ig = 332748118;
    
    LL fpow(LL a, LL b, LL c) {
      LL ret = 1 % c;
      for (; b; b >>= 1, a = a * a % mod) if (b & 1) ret = ret * a % mod;
      return ret;
    }
    
    void ntt(vector<LL> &v, vector<int> &rev, int opt) {
      int tot = v.size();
      for (int i = 0; i < tot; i++) if (i < rev[i]) swap(v[i], v[rev[i]]);
      for (int mid = 1; mid < tot; mid <<= 1) {
        LL wn = fpow(opt == 1 ? g : ig, (mod - 1) / (mid << 1), mod);
        for (int j = 0; j < tot; j += mid << 1) {
          LL w = 1;
          for (int k = 0; k < mid; k++) {
            LL x = v[j + k], y = v[j + mid + k] * w % mod;
            v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
            w = w * wn % mod;
          }
        }
      }
      if (opt == -1) {
        LL itot = fpow(tot, mod - 2, mod);
        for (int i = 0; i < tot; i++) v[i] = v[i] * itot % mod;
      }
    }
    
    vector<LL> convolution(vector<LL> &a, int cnta, vector<LL> &b, int cntb, const function<LL(LL, LL)> &calc) {
      int bit = 0, tot = 1;
      while (tot <= 2 * max(cnta, cntb)) bit++, tot <<= 1;
      vector<int> rev(tot);
      for (int i = 0; i < tot; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1);
      vector<LL> foo(tot), bar(tot);
      for (int i = 0; i < cnta; i++) foo[i] = a[i];
      for (int i = 0; i < cntb; i++) bar[i] = b[i];
      ntt(foo, rev, 1), ntt(bar, rev, 1);
      for (int i = 0; i < tot; i++) foo[i] = calc(foo[i], bar[i]);
      ntt(foo, rev, -1);
      return foo;
    }
    
    int main() {
      //freopen("data.in", "r", stdin);
      ios::sync_with_stdio(false);
      cin.tie(0), cout.tie(0);
      int n, K;
      cin >> n >> K;
      vector<LL> a(n);
      for (int i = 0; i < n; i++) {
        cin >> a[i];
      }
      int m;
      cin >> m;
      while (m--) {
        int opt;
        cin >> opt;
        vector<LL> b = a;
        if (opt == 1) {
          int q, x, y;
          cin >> q >> x >> y;
          x--;
          b[x] = y;
          for (int i = 0; i < n; i++) {
            b[i] = (q - b[i] + mod) % mod;
          }
        } else {
          int q, l, r, d;
          cin >> q >> l >> r >> d;
          l--, r--;
          for (int i = l; i <= r; i++) {
            b[i] = (b[i] + d) % mod;
          }
          for (int i = 0; i < n; i++) {
            b[i] = (q - b[i] + mod) % mod;
          }
        }
        function<vector<LL>(int, int)> solve = [&](int l, int r) {
          if (l == r) {
            return vector<LL> {1, b[l]};
          }
          int mid = l + r >> 1;
          vector<LL> ls = solve(l, mid);
          vector<LL> rs = solve(mid + 1, r);
          return convolution(ls, mid - l + 2, rs, r - mid + 1, [&](LL a, LL b) {
            return a * b % mod;
          });
        };
        vector<LL> ans = solve(0, n - 1);
        cout << ans[K] << endl;
      }
      return 0;
    }
    
    
  • 相关阅读:
    getopt for windows
    开源代码学习之Tinyhttpd
    GCC 中的编译器堆栈保护技术
    读《程序员的思维修炼》有感
    main之前初始化流程
    平均速度
    显示图案
    圆的面积和周长
    C#(Winform) Http 发送数据
    Android BaseAdapter的使用
  • 原文地址:https://www.cnblogs.com/wzj-xhjbk/p/11718696.html
Copyright © 2011-2022 走看看