zoukankan      html  css  js  c++  java
  • poj 2528 Mayor's posters 【线段树 + 离散化】

    Mayor's posters
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 50643   Accepted: 14675

    Description

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
    • Every candidate can place exactly one poster on the wall. 
    • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
    • The wall is divided into segments and the width of each segment is one byte. 
    • Each poster must completely cover a contiguous number of wall segments.

    They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
    Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

    Input

    The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

    Output

    For each input data set print the number of visible posters after all the posters are placed. 

    The picture below illustrates the case of the sample input. 

    Sample Input

    1
    5
    1 4
    2 6
    8 10
    3 4
    7 10
    

    Sample Output

    4



    题意:一个城市要竞选市长。竞选者能够在一块墙上贴海报为自己拉票,每一个人能够贴连续的一块区域。后来贴的能够覆盖前面的,问到最后一共能够看到多少张海报。


    第一道离散化:(滚动数组优化) ORZ网上的大牛



    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #define MAXN 10000+100
    using namespace std;
    struct Node
    {
        int x, y;
    };
    Node num[10100];
    int color[MAXN<<4];
    int rec[MAXN<<4];//离散化 存储
    int Find(int val, int *a, int L, int R)//在a数组下标[L, R]范围里面 查找val值的下标
    {
        int left = L, right = R;
        while(left <= right)
        {
            int mid = (left + right) >> 1;
            if(a[mid] == val)
                return mid;
            if(a[mid] < val)
                left = mid  + 1;
            else
                right = mid - 1;
        }
        return -1;
    }
    void PushDown(int o)
    {
        if(color[o])
        {
            color[o<<1] = color[o<<1|1] = color[o];
            color[o] = 0;
        }
    }
    void update(int o, int l, int r, int L, int R, int v)
    {
        if(L <= l && R >= r)
        {
            color[o] = v;
            return ;
        }
        PushDown(o);
        int mid = (l + r) >> 1;
        if(L <= mid)
            update(o<<1, l, mid, L, R, v);
        if(R > mid)
            update(o<<1|1, mid+1, r, L, R, v);
    }
    int vis[10100];//标记该海报是否出现过
    int ans;//纪录数目
    void query(int o, int l, int r)
    {
        if(color[o])
        {
            if(!vis[color[o]])
            ans++,vis[color[o]] = true;
                return ;
        }
            //return ;
        if(l == r)
            return ;
        int mid = (l + r) >> 1;
        query(o<<1, l, mid);
        query(o<<1|1, mid+1, r);
    }
    int main()
    {
        int t, N;
        scanf("%d", &t);
        while(t--)
        {
            scanf("%d", &N);
            memset(color, 0, sizeof(color));
            int len = 1;
            for(int i = 1; i <= N; i++)
            {
                scanf("%d%d", &num[i].x, &num[i].y);
                rec[len++] = num[i].x;
                rec[len++] = num[i].y;
            }
            sort(rec+1, rec+len);
            //离散化
            int RR = 2;
            for(int i = 2; i < len; i++)//滚动数组优化
            {
                if(rec[i] != rec[i-1])
                    rec[RR++] = rec[i];
            }
            for(int i = RR-1; i > 1; i--)
            {
                if(rec[i] != rec[i-1] + 1)
                    rec[RR++] = rec[i-1] + 1;
            }
            sort(rec+1, rec+RR);//不是RR+1
            for(int i = 1; i <= N; i++)
            {
                int l = Find(num[i].x, rec, 1, RR-1);
                int r = Find(num[i].y, rec, 1, RR-1);
                update(1, 1, RR-1, l, r, i);
            }
            memset(vis, false, sizeof(vis));
            ans = 0;
            query(1, 1, RR-1);
            printf("%d
    ", ans);
        }
        return 0;
    }


  • 相关阅读:
    一篇文章让你了解GC垃圾回收器
    使用SpringBoot整合ssm项目
    SpringBoot项目集成Hystrix
    50个简单易懂的经济学定律
    使用POI导出EXCEL工具类并解决导出数据量大的问题
    数据库事务的四大特性以及四种隔离级别
    简单了解Redis
    如何更规范化的编写JAVA 代码
    如何在Linux服务器上部署Mysql
    常见的数据库函数,关键字整理
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/6946038.html
Copyright © 2011-2022 走看看