zoukankan      html  css  js  c++  java
  • CF292-A

    A. Drazil and Date
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0, 0) and Varda's home is located in point (a, b). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (x, y) he can go to positions (x + 1, y), (x - 1, y), (x, y + 1) or (x, y - 1).

    Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (a, b) and continue travelling.

    Luckily, Drazil arrived to the position (a, b) successfully. Drazil said to Varda: "It took me exactly s steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0, 0) to (a, b) in exactly s steps. Can you find out if it is possible for Varda?

    Input

    You are given three integers a, b, and s ( - 109 ≤ a, b ≤ 109, 1 ≤ s ≤ 2·109) in a single line.

    Output

    If you think Drazil made a mistake and it is impossible to take exactly s steps and get from his home to Varda's home, print "No" (without quotes).

    Otherwise, print "Yes".

    Sample test(s)
    input
    5 5 11
    output
    No
    input
    10 15 25
    output
    Yes
    input
    0 5 1
    output
    No
    input
    0 0 2
    output
    Yes
    Note

    In fourth sample case one possible route is: .

    给定一个目标地点(a,b)和确定步数s

    问是否能走s步从(0,0)到(a,b),注:走的过程可以返回上一步

    以最短路径走到目标点和多次走到目标所需的步数的奇偶性一致,故只需要判断所给步数与以最短路步数的奇偶性是否一致即可

    #include <iostream>
    using namespace std;
    int main()
    {
        int a,b,n;
        cin>>a>>b>>n;
        if(a<0)
            a=-a;
        if(b<0)
            b=-b;
        if((n-a-b)%2==0&&n-a-b>=0)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
        return 0;
    }
    
    
  • 相关阅读:
    Lock和synchronized的区别和使用(转发)
    redis集群配置
    分布式之redis(转发)
    拉格朗日乘法与KKT条件
    骨骼动画原理
    常用非线性优化算法总结
    广义线性回归模型(三)
    线性模型、最优化方法(二)
    矩阵微分基础(一)
    OpenGL坐标系统
  • 原文地址:https://www.cnblogs.com/wzsblogs/p/4295799.html
Copyright © 2011-2022 走看看