zoukankan      html  css  js  c++  java
  • 【源码解读】cycleGAN(一):网络

    源码地址:https://github.com/aitorzip/PyTorch-CycleGAN

    如图所示,cycleGAN的网络结构包括两个生成器G(X->Y)和F(Y->X),两个判别器Dx和Dy

    生成器部分:网络整体上经过一个降采样然后上采样的过程,中间是一系列残差块,数目由实际情况确定,根据论文中所说,当输入分辨率为128x128,采用6个残差块,当输入分辨率为256x256甚至更高时,采用9个残差块,其源代码如下,

    class Generator(nn.Module):
        def __init__(self, input_nc, output_nc, n_residual_blocks=9):
            super(Generator, self).__init__()
    
            # Initial convolution block       
            model = [   nn.ReflectionPad2d(3),
                        nn.Conv2d(input_nc, 64, 7),
                        nn.InstanceNorm2d(64),
                        nn.ReLU(inplace=True) ]
    
            # Downsampling
            in_features = 64
            out_features = in_features*2
            for _ in range(2):
                model += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                            nn.InstanceNorm2d(out_features),
                            nn.ReLU(inplace=True) ]
                in_features = out_features
                out_features = in_features*2
    
            # Residual blocks
            for _ in range(n_residual_blocks):
                model += [ResidualBlock(in_features)]
    
            # Upsampling
            out_features = in_features//2
            for _ in range(2):
                model += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                            nn.InstanceNorm2d(out_features),
                            nn.ReLU(inplace=True) ]
                in_features = out_features
                out_features = in_features//2
    
            # Output layer
            model += [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7),
                        nn.Tanh() ]
    
            self.model = nn.Sequential(*model)
    
        def forward(self, x):
            return self.model(x)

    其中,值得注意的网络层是nn.ReflectionPad2d和nn.InstanceNorm2d,前者搭配7x7卷积,先在特征图周围以反射的方式补长度,使得卷积后特征图尺寸不变,示例如下,输出结果就是以特征图边界为反射边,向外补充

     nn.InstanceNorm2d是相比于batchNorm更加适合图像生成,风格迁移的归一化方法,相比于batchNorm跨样本,单通道统计,InstanceNorm采用单样本,单通道统计,括号中的参数代表通道数。

    判别器部分:结构比生成器更加简单,经过5层卷积,通道数缩减为1,最后池化平均,尺寸也缩减为1x1,最最后reshape一下,变为(batchsize,1)

    class Discriminator(nn.Module):
        def __init__(self, input_nc):
            super(Discriminator, self).__init__()
    
            # A bunch of convolutions one after another
            model = [   nn.Conv2d(input_nc, 64, 4, stride=2, padding=1),
                        nn.LeakyReLU(0.2, inplace=True) ]
    
            model += [  nn.Conv2d(64, 128, 4, stride=2, padding=1),
                        nn.InstanceNorm2d(128), 
                        nn.LeakyReLU(0.2, inplace=True) ]
    
            model += [  nn.Conv2d(128, 256, 4, stride=2, padding=1),
                        nn.InstanceNorm2d(256), 
                        nn.LeakyReLU(0.2, inplace=True) ]
    
            model += [  nn.Conv2d(256, 512, 4, padding=1),
                        nn.InstanceNorm2d(512), 
                        nn.LeakyReLU(0.2, inplace=True) ]
    
            # FCN classification layer
            model += [nn.Conv2d(512, 1, 4, padding=1)]
    
            self.model = nn.Sequential(*model)
    
        def forward(self, x):
            x =  self.model(x)
            # Average pooling and flatten
            return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0])
  • 相关阅读:
    scala :: , +:, :+ , ::: , ++ 的区别
    Scala 函数式编程思想
    Scala 关键字
    HDFS 的内存存储是什么?
    LRU
    高并发情况限流
    Java中List集合去除重复数据的方法
    MySQL支持的跨库事务
    死磕ConcurrentHashMap 1.8源码解析
    一致性Hash算法
  • 原文地址:https://www.cnblogs.com/wzyuan/p/11886218.html
Copyright © 2011-2022 走看看