zoukankan      html  css  js  c++  java
  • 【Support Vector Regression】林轩田机器学习技法

    上节课讲了Kernel的技巧如何应用到Logistic Regression中。核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的。

    这一节,继续沿用representer theorem,延伸到一般的regression问题。

    首先想到的就是ridge regression,它的cost函数本身就是符合representer theorem的形式。

    由于optimal solution一定可以表示成输入数据的线性组合,再配合Kernel Trick,可以获得ridge regression的kernel trick形式。

    这样就获得了kernel ridge regression的analytic solution形式。

    但是这样算出来的beita是非常dense的。

    因此,对比linear和kernel ridge regression:

    (1)linear的效率可能要比kernel的高,尤其是N很大的时候

    (2)kernel的灵活性要好(弯弯曲曲的),但是一旦N很大基本就废了

    上面个说的这种kernel ridge regression for classification有个正式的名称叫“least-squares SVM (LSSVM)”

    对比原来的Soft-Margin SVM,LSSVM的support vectors多了很多;再由于W是Support Vectors的线性组合,这就意味这在predict的时候要耗费更多的时间。

    现在问题来了,能否用什么方法,把这种一般的regression for classification问题转换成SVM那种sparse support vectors的形式呢?

    这里引入了一种新的regression叫tube regression的方式:

    (1)tube的核心在于error measure的方式:epsilon insensitive error的方式

    (2)引入L2 regularized tube regression来实现sparse support vectors

    (3)对比这种epsilon insensitive error和square error,可以看score与y相差较远时,tube似乎受到outliers的影响更小一些

    更进一步,把L2-Regularized用到Tube Regression上面就形成了如下的cost function。

    L2-Regularized Tube Regression的cost function虽然是无约束的,但是是不可导的,并且也看不出来啥sparsity的可能。

    那么,能否模仿standard SVM的技巧,换成有约束但是可导的cost function呢?

    (1)如果直接模仿SVM的cost function形式:引入一个kesin;貌似长得很像SVM了,但是由于带了个绝对值,所以还是不能求导

    (2)这时候,前人的智慧就派上用场了:

        a. 引入kesin up代表score比yn大出epsilon的容忍范围

        b. 再引入kesin down代表score比yn小出epsilon的容忍范围

        c. 修改cost function的形式:把kesin up和kesin down都放到里面

    总的来说,就是引多引入了N个变量,多了N个constraints;结果最终把L2-regularized Tube Regression的cost function转化成了Quadratic Programming的问题。

    紧接着,能否再转化为dual问题求解呢?(引入kernel容易一些?)

    引入两套Lagrange Multipliers。

    再配合上KKT条件,就可以得到dual形式的Quadratic Programming的问题形式。

    最终dual形式与soft-margin形式的svm非常类似。

    根据representer theorem,只有outside tube或者on tube上的点才是支撑向量。虽说这种sparsity感觉怪怪的,但毕竟已经比原来的LLSVM好很多了。

  • 相关阅读:
    linux卸载mysql,apache,php
    iOS 秒数转换成时间,时,分,秒
    iOS 正则表达式判断邮箱、身份证..是否正确
    ios 删除系统从相册压缩的视频
    iOS 视频选择压缩
    iOS 从相册中拿到 图片名 ,截取后缀,图片名
    ios 根据颜色生成图片,十六进制颜色。
    ios 友盟第三方登录遇到的各种坑。
    项目适配iOS9遇到的一些问题及解决办法 ,以及URL 白名单配置方法
    ios 设置head请求头,自定义head, read response header
  • 原文地址:https://www.cnblogs.com/xbf9xbf/p/4643291.html
Copyright © 2011-2022 走看看