![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int phi[maxn]; void euler() { for (int i = 2; i < maxn; i++) { if (!phi[i]) { for (int j = i; j < maxn; j += i) { if (!phi[j]) phi[j] = j; phi[j] = phi[j] / i * (i - 1); } } } phi[1] = 1; } int main() { // freopen("out", "w", stdout); euler(); for (int i = 1; i < maxn; i++) cout << "Euler " << i << " is : " << phi[i] << endl; return 0; }
这是一个欧拉函数的板子,小于或等于n的正整数中与n互质的数的数目
hdu2588
GCD
http://acm.hdu.edu.cn/showproblem.php?pid=2588
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<bits/stdc++.h> #define int long long using namespace std; int Euler(int n){ int res = n; for(int i = 2;i <= sqrt(n); i++){ if(n % i == 0) res = res / i * (i - 1); while (n % i == 0) n /= i; } if(n > 1) res = res / n * (n - 1); return res; } int t,n,m,ans; signed main(){ ios::sync_with_stdio(0); cin >> t; while(t--){ cin >> n >> m; ans = 0; for(int a = 1;a <= sqrt(n); a++){ if(n % a == 0){ if(a >= m) ans += Euler(n / a); if(a * a != n && n / a >= m) ans += Euler(a); } } cout << ans << endl; } return 0; }