讲解清晰,转载自:https://blog.csdn.net/rifengxxc/article/details/75008427
众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。
1 sum函数可以传入一个axis的参数,这个参数怎么理解呢?这样理解:
假设我生成一个numpy数组a,如下
- >>> import numpy as np
- >>> a = np.array([[[1,2,3,2],[1,2,3,1],[2,3,4,1]],[[1,0,2,0],[2,1,2,0],[2,1,1,1]]])
- >>> a
- array([[[1, 2, 3, 2],
- [1, 2, 3, 1],
- [2, 3, 4, 1]],
- [[1, 0, 2, 0],
- [2, 1, 2, 0],
- [2, 1, 1, 1]]])
- >>>
这是一个拥有两维的数组,每一维又拥有三个数组,这个数组里面拥有四个元素。如果我们要将这个a数组中的第一个元素1定位出来,则我们会输入a[0][0][0]。好,这个axis的取值就是这个精确定位某个元素需要经过多少数组的长度,在这里是3,,所以axis的取值有0,1,2。如果一个数组精确到某个元素需要a[n0][n1][n2][...][n],则axis的取值就是n。定位 到这里,axis的参数的取值就解释完成了。
2 理解参数axis取值对sum结果的影响:
前面说了axis的取值(以数组a为例),axis=0,1,2。在这里,精确定位到某个元素可以用a[n0][n1][n2]表示。n0的取值是0,1(数组两维),代表第一个索引;n1的取值是0,1,2(每一维数组拥有3个子数组),代表第二个索引;n2的取值是0,1,2,3(每个子数组有4个元素),代表第三个索引,这几个取值在后面会用到。
2.1 axis = 0的时候:
axis=0,对应n0已经确定下来,即n0取值定为0,1。所以sum每个元素的求和公式是sum = a[0][n1][n2]+a[1][n1][n2]。接下来确定sum的行数和列数,n1的取值是0,1,2,为3个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为3*4的数组。
如何求sum的各个元素呢,sum = a[0][n1][n2]+a[1][n1][n2]这个公式又如何理解呢?如下。我们可以做一个表格:注意颜色
所以sum(axis=0)的值是 [ [2, 2, 5, 2], [3, 3, 5, 1], [4, 4, 5, 2]]。
验证一下, 正确!
<span style="font-size:14px;">>>> a.sum(axis=0)
- array([[2, 2, 5, 2],
- [3, 3, 5, 1],
- [4, 4, 5, 2]])
- </span>
2.2 axis = 1的时候:
axis=1,对应n1已经确定下来,即n1取值定为0,1,2。所以sum每个元素的求和公式是sum =a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为2*4的数组。
如何求sum的各个元素呢,sum = a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
n2=0 | n2=1 | n2=2 | n2=3 | |
n0=0 | a[0][0][0]+ a[0][1][0]+ a[0][2][0] = 1+1+2=4 |
a[0][0][1]+ a[0][1][1]+ a[0][2][1] =2+2+3=7 |
a[0][0][2]+ a[0][1][2]+ a[0][2][2] =3+3+4=10 |
a[0][0][3]+ a[0][1][3]+ a[0][2][3] =2+1+1=4 |
n0=1 | a[1][0][0]+ a[1][1][0]+ a[1][2][0] =1+2+2=5 |
a[1][0][1]+ a[1][1][1]+ a[1][2][1] =0+1+1=2 |
a[0][0][2]+ a[0][1][2]+ a[0][2][2] =2+2+1=5 |
a[1][0][3]+ a[1][1][3]+ a[1][2][3] =0+0+1=1 |
所以sum(axis=1)的值是 [ [4, 7, 10, 4], [5, 2, 5, 1]]. 验证如下,正确。
- >>> a.sum(axis=1)
- array([[ 4, 7, 10, 4],
- [ 5, 2, 5, 1]])
2.3 axis = 2的时候:
axis=2,对应n2已经确定下来,即n2取值定为0,1,2, 3。所以sum每个元素的求和公式是sum =a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n1的取值是0,1,2,为3个数,代表列数,所以sum为2*3的数组。
如何求sum的各个元素呢,sum = a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
n1=0 | n1=1 | n1=2 | |
n0=0 | a[0][0][0]+ a[0][0][1]+ a[0][0][2]+ a[0][0][3] =1+2+3+2=8 |
a[0][1][0]+ a[0][1][1]+ a[0][1][2]+ a[0][1][3] =1+2+3+1=7 |
a[0][2][0]+ a[0][2][1]+ a[0][2][2]+ a[0][2][3] =2+3+4+1=10 |
n0=1 | a[1][0][0]+ a[1][0][1]+ a[1][0][2]+ a[1][0][3] =1+0+2+0=3 |
a[1][1][0]+ a[1][1][1]+ a[1][1][2]+ a[1][1][3] =2+1+2+0=5 |
a[1][2][0]+ a[1][2][1]+ a[1][2][2]+ a[1][2][3] =2+1+1+1=5 |
所以sum(axis=2)的值是 [ [8, 7, 10], [3, 5, 5]]. 验证如下,正确。
- <span style="font-size:14px;">>>> a.sum(axis=2)
- array([[ 8, 7, 10],
- [ 3, 5, 5]])</span>
keepdims主要用于保持矩阵的二维特性
import numpy as np
a = np.array([[1,2],[3,4]])
# 按行相加,并且保持其二维特性
print(np.sum(a, axis=1, keepdims=True))
# 按行相加,不保持其二维特性
print(np.sum(a, axis=1))
输出
array([[3], [7]])
array([3, 7])