zoukankan      html  css  js  c++  java
  • [SPOJ7258]Lexicographical Substring Search

    [SPOJ7258]Lexicographical Substring Search

    试题描述

    Little Daniel loves to play with strings! He always finds different ways to have fun with strings! Knowing that, his friend Kinan decided to test his skills so he gave him a string S and asked him Q questions of the form:


    If all distinct substrings of string S were sorted lexicographically, which one will be the K-th smallest?


    After knowing the huge number of questions Kinan will ask, Daniel figured out that he can't do this alone. Daniel, of course, knows your exceptional programming skills, so he asked you to write him a program which given S will answer Kinan's questions.

    Example:


    S = "aaa" (without quotes)
    substrings of S are "a" , "a" , "a" , "aa" , "aa" , "aaa". The sorted list of substrings will be:
    "a", "aa", "aaa".

    输入

    In the first line there is Kinan's string S (with length no more than 90000 characters). It contains only small letters of English alphabet. The second line contains a single integer Q (Q <= 500) , the number of questions Daniel will be asked. In the next Q lines a single integer K is given (0 < K < 2^31).

    输出

    Output consists of Q lines, the i-th contains a string which is the answer to the i-th asked question.

    输入示例

    aaa
    2
    2
    3

    输出示例

    aa
    aaa

    题解

    这题其实就是这道题的一个子问题。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    
    int read() {
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 90010
    
    char S[maxn];
    int n, rank[maxn], height[maxn], sa[maxn], Ws[maxn];
    
    bool cmp(int* a, int p1, int p2, int l) {
    	if(p1 + l > n && p2 + l > n) return a[p1] == a[p2];
    	if(p1 + l > n || p2 + l > n) return 0;
    	return a[p1] == a[p2] && a[p1+l] == a[p2+l];
    }
    void ssort() {
    	int *x = rank, *y = height;
    	int m = 0;
    	for(int i = 1; i <= n; i++) Ws[x[i] = S[i]]++, m = max(m, x[i]);
    	for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
    	for(int i = n; i; i--) sa[Ws[x[i]]--] = i;
    	for(int j = 1, pos = 0; pos < n; j <<= 1, m = pos) {
    		pos = 0;
    		for(int i = n - j + 1; i <= n; i++) y[++pos] = i;
    		for(int i = 1; i <= n; i++) if(sa[i] > j) y[++pos] = sa[i] - j;
    		for(int i = 1; i <= m; i++) Ws[i] = 0;
    		for(int i = 1; i <= n; i++) Ws[x[i]]++;
    		for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
    		for(int i = n; i; i--) sa[Ws[x[y[i]]]--] = y[i];
    		swap(x, y); pos = 1; x[sa[1]] = 1;
    		for(int i = 2; i <= n; i++) x[sa[i]] = cmp(y, sa[i], sa[i-1], j) ? pos : ++pos;
    	}
    	return ;
    }
    void calch() {
    	for(int i = 1; i <= n; i++) rank[sa[i]] = i;
    	for(int i = 1, j, k = 0; i <= n; height[rank[i++]] = k)
    		for(k ? k-- : 0, j = sa[rank[i]-1]; S[j+k] == S[i+k]; k++);
    	return ;
    }
    
    int en[maxn];
    
    int main() {
    	scanf("%s", S + 1);
    	n = strlen(S + 1);
    	
    	ssort();
    	calch();
    	for(int i = 1; i <= n; i++) en[i] = n - sa[i] + 1 - height[i];
    	for(int i = 1; i <= n; i++) en[i] += en[i-1];
    	int q = read();
    	while(q--) {
    		int k = read(), p = lower_bound(en + 1, en + n + 1, k) - en;
    		int l = sa[p], r = n - (en[p] - k);
    		for(int i = l; i <= r; i++) putchar(S[i]); putchar('
    ');
    	}
    	
    	return 0;
    }
    

    这道题用后缀自动机也是可以滴。对于每个节点 i 我们维护一发 f(i) 表示状态 i 之后总共有多少种填法,然后我们每一位枚举填哪个字母,看后续状态数是否 ≥ k。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    
    int read() {
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 180010
    #define maxa 26
    
    char S[maxn];
    int n;
    
    int rt, last, ToT, ch[maxn][maxa], par[maxn], Max[maxn], f[maxn];
    void extend(int x) {
    	int p = last, np = ++ToT; Max[np] = Max[p] + 1; f[np] = 1; last = np;
    	while(p && !ch[p][x]) ch[p][x] = np, p = par[p];
    	if(!p){ par[np] = rt; return ; }
    	int q = ch[p][x];
    	if(Max[q] == Max[p] + 1){ par[np] = q; return ; }
    	int nq = ++ToT; Max[nq] = Max[p] + 1; f[nq] = 1;
    	memcpy(ch[nq], ch[q], sizeof(ch[q]));
    	par[nq] = par[q];
    	par[q] = par[np] = nq;
    	while(p && ch[p][x] == q) ch[p][x] = nq, p = par[p];
    	return ;
    }
    int sa[maxn], Ws[maxn];
    void build() {
    	for(int i = 1; i <= ToT; i++) Ws[n-Max[i]]++;
    	for(int i = 1; i <= n; i++) Ws[i] += Ws[i-1];
    	for(int i = ToT; i; i--) sa[Ws[n-Max[i]]--] = i;
    	for(int i = 1; i <= ToT; i++)
    		for(int c = 0; c < maxa; c++) f[sa[i]] += f[ch[sa[i]][c]];
    	return ;
    }
    
    int main() {
    	scanf("%s", S);
    	
    	n = strlen(S);
    	rt = last = ToT = 1;
    	for(int i = 0; i < n; i++) extend(S[i] - 'a');
    	build();
    //	for(int i = 1; i <= ToT; i++) printf("%d%c", f[i], i < ToT ? ' ' : '
    ');
    	
    	int q = read();
    	while(q--) {
    		int k = read(), p = rt;
    		while(k)
    			for(int c = 0; c < maxa; c++) if(ch[p][c])
    				if(f[ch[p][c]] >= k) {
    					putchar(c + 'a'); k--; p = ch[p][c]; break;
    				}
    				else k -= f[ch[p][c]];
    		putchar('
    ');
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    poj 1273 Drainage Ditches
    网络流之--混合图的欧拉回路 出自yzmduncan.iteye.com/blog/1149049
    hdu 2203 亲和串 kmp
    hdu 1711 kmp
    KMP算法详解 出自matrix67.com
    zoj 2016 Play on Words 欧拉回路
    修改document.domain的注意事项(转)
    ActiveXObject函数详解(转)
    angularjs
    sbt
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/6544662.html
Copyright © 2011-2022 走看看