zoukankan      html  css  js  c++  java
  • poj 1458最长公共子序列

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 32971   Accepted: 12925

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 
     4 const int max=1010;
     5 char a[max],b[max];
     6 int d[max][max],s[max][max];
     7 
     8 void print(int i,int j)
     9 {
    10      if(i==0||j==0) return ;
    11      if(s[i][j]==0)
    12      {
    13                    print(i-1,j-1);
    14                    printf("%c ",a[i-1]);
    15      }
    16      else if(s[i][j]==1) print(i,j-1);
    17      else print(i-1,j);
    18 }
    19      
    20 int main()
    21 {
    22     int n,m,i,j;
    23     while(scanf("%s%s",a,b)!=EOF)
    24     {
    25         n=strlen(a);
    26         m=strlen(b);
    27         memset(d,0,sizeof(d));
    28         memset(s,0,sizeof(s));
    29         for(i=1;i<=n;i++)
    30             for(j=1;j<=m;j++)
    31             {
    32                 if(a[i-1]==b[j-1])
    33                 {
    34                     d[i][j]=d[i-1][j-1]+1;
    35                     s[i][j]=0;
    36                 }
    37                 else if(d[i][j-1]>d[i-1][j])
    38                 {
    39                     d[i][j]=d[i][j-1];
    40                     s[i][j]=1;
    41                 }
    42                 else 
    43                 {
    44                     d[i][j]=d[i-1][j];
    45                     s[i][j]=2;
    46                 }
    47             }
    48         printf("%d\n",d[n][m]);
    49         //print(n,m);
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    差分约束系统详解
    AC自动机详解
    KMP算法详解
    ST算法详解
    Trie详解
    欧拉路径详解
    树上差分详解
    LCA详解
    树链剖分详解
    树的直径详解
  • 原文地址:https://www.cnblogs.com/xiaofanke/p/3119861.html
Copyright © 2011-2022 走看看