红黑树的性质
RB-Tree是一棵二叉查找树,并且具备有以下性质:
- 每个节点或是红色的,或是黑色的。
- 根节点是黑色的。
- 每个叶节点(NULL)是黑色的。
- 如果一个节点是红色的,则它的两个孩子节点都是黑色的。
- 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
采用了header技巧,header指向根节点的指针,与根节点互为对方的父节点。他们之间的结构如下图所示:
RB-Tree
#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H
/*
SGI STL中的RB-Tree实现机制有一定的技巧,定义了一个指向根节点的节点指针header,
并且,header和根节点root互为对方的父节点,header的左子节点指向RB-Tree的最小节点,
header的右子节点指向RB-Tree的最大节点.
*/
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1375
#endif
typedef bool _Rb_tree_Color_type; //@ 节点颜色类型,非红即黑
const _Rb_tree_Color_type _S_rb_tree_red = false; //@ 红色为0
const _Rb_tree_Color_type _S_rb_tree_black = true; //@ 黑色为1
//@ RB-Tree节点基本结构
struct _Rb_tree_node_base
{
typedef _Rb_tree_Color_type _Color_type; //@ 节点颜色类型
typedef _Rb_tree_node_base* _Base_ptr; //@ 基本节点指针
_Color_type _M_color; //@ 节点颜色
_Base_ptr _M_parent; //@ 指向父节点
_Base_ptr _M_left; //@ 指向左孩子节点
_Base_ptr _M_right; //@ 指向右孩子节点
//@ RB-Tree最小节点,即最左节点
static _Base_ptr _S_minimum(_Base_ptr __x)
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
//@ RB-Tree最大节点,即最右节点
static _Base_ptr _S_maximum(_Base_ptr __x)
{
//@ 一直往RB-Tree的右边走,最右的节点即是最大节点
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
};
//@ RB-Tree 节点结构
//@ 继承节点基本结构 _Rb_tree_node_base 的节点信息
template <class _Value>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Value>* _Link_type; //@ 节点指针,指向数据节点
_Value _M_value_field; //@ 节点数据域,即关键字
};
//@ RB-Tree 的迭代器 iterator 基本结构
//@ iterator迭代器的类型为双向迭代器 bidirectional_iterator
struct _Rb_tree_base_iterator
{
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr; //@ 节点指针
typedef bidirectional_iterator_tag iterator_category; //@ 迭代器类型
typedef ptrdiff_t difference_type;
_Base_ptr _M_node; //@ 节点指针,连接容器
//@ 下面只是为了实现oprerator++的,其他地方不会调用.
//@ RB-Tree的后继节点
void _M_increment()
{
//@ 【情况1】:存在右子树,则找出右子树的最小节点
if (_M_node->_M_right != 0) { //@如果有右子树
_M_node = _M_node->_M_right; //@ 向右边走
while (_M_node->_M_left != 0) //@ 往右子树中的左边一直走到底
_M_node = _M_node->_M_left; //@ 最左节点就是后继结点
}
//@ 没有右子树,但是RB-Tree中节点node存在后继结点
else {
_Base_ptr __y = _M_node->_M_parent; //@ 沿其父节点上溯
while (_M_node == __y->_M_right) { //@ 【情况2】:若节点是其父节点的右孩子,则上溯
_M_node = __y; //@ 一直上溯,直到“某节点不是其父节点的右孩子”为止
__y = __y->_M_parent;
}
/*
若此时的右子节点不等于此时的父节点,此时的父节点即为解答,否则此时的node为解答.
因为SGI STL中的RB-Tree加入的header节点,所以需考虑特殊情况;
这样做是为了应付一种特殊情况:我们欲寻找根节点的下一个节点,而恰巧根节点无右孩子。
当然,以上特殊做法必须配合RB-tree根节点与特殊header之间的特殊关系
*/
//@ 以下情况3和情况4是针对header节点的使用,因为根节点和header节点是互为父节点
if (_M_node->_M_right != __y) //@ 【情况3】:若此时的右子节点不等于此时的父节点
_M_node = __y; //@ 此时的父节点即为解答
//@ 【情况4】:否则此时的node为解答
}
}
//@ 下面只是为了实现oprerator--的,其他地方不会调用.
//@ RB-Tree的前驱节点
void _M_decrement()
{
if (_M_node->_M_color == _S_rb_tree_red && //@ 如果是红节点,且
_M_node->_M_parent->_M_parent == _M_node) //@ 父节点的父节点等于自己
_M_node = _M_node->_M_right; //@ 【情况1】:右子节点即为解答。
/*
以上情况发生于node为header时(亦即node为end()时)。注意,header之右孩子即
mostright,指向整棵树的max节点。
*/
else if (_M_node->_M_left != 0) { //@ 若有左孩子节点。【情况2】:左子树的最大值即为前驱节点
_Base_ptr __y = _M_node->_M_left; //@ 向左边走,即令y指向左孩子
while (__y->_M_right != 0) //@ y存在右孩子,
__y = __y->_M_right; //@一直往右走到底
_M_node = __y; //@ 最后即为解答
}
else { //@ 即非根节点,且没有左孩子节点,【情况3】
_Base_ptr __y = _M_node->_M_parent; //@ 找出父节点
while (_M_node == __y->_M_left) { //@ node节点是其父节点的左孩子
_M_node = __y; //@ 一直交替上溯
__y = __y->_M_parent; //@ 直到不为左孩子结点
}
_M_node = __y; //@ 此时父节点即为解答
}
}
};
//@ RB-Tree的迭代器iterator结构
//@ 继承基类迭代器Rb_tree_base_iterator
template <class _Value, class _Ref, class _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
{
//@ 迭代器的内嵌类型
typedef _Value value_type;
typedef _Ref reference;
typedef _Ptr pointer;
typedef _Rb_tree_iterator<_Value, _Value&, _Value*>
iterator;
typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*>
const_iterator;
typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>
_Self;
typedef _Rb_tree_node<_Value>* _Link_type; //@ 节点指针
//@构造函数
_Rb_tree_iterator() {}
_Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
_Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
//@ 以下是操作符重载
reference operator*() const { return _Link_type(_M_node)->_M_value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
//@ 前缀operator++找出后继节点,调用基类的_M_increment()
_Self& operator++() { _M_increment(); return *this; }
//@ 后缀operator++找出后继节点,调用基类的_M_increment()
_Self operator++(int) {
_Self __tmp = *this;
_M_increment();
return __tmp;
}
//@ 前缀operator--找出前驱节点,调用基类的_M_decrement()
_Self& operator--() { _M_decrement(); return *this; }
//@ 后缀operator--找出前驱节点,调用基类的_M_decrement()
_Self operator--(int) {
_Self __tmp = *this;
_M_decrement();
return __tmp;
}
};
//@ 两个迭代器相等,意味着指向RB-Tree的同一个节点
inline bool operator==(const _Rb_tree_base_iterator& __x,
const _Rb_tree_base_iterator& __y) {
return __x._M_node == __y._M_node;
}
inline bool operator!=(const _Rb_tree_base_iterator& __x,
const _Rb_tree_base_iterator& __y) {
return __x._M_node != __y._M_node;
//@ 两个迭代器不相等,意味着所指向的节点不同
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline bidirectional_iterator_tag
iterator_category(const _Rb_tree_base_iterator&) {
return bidirectional_iterator_tag();
}
inline _Rb_tree_base_iterator::difference_type*
distance_type(const _Rb_tree_base_iterator&) {
return (_Rb_tree_base_iterator::difference_type*) 0;
}
template <class _Value, class _Ref, class _Ptr>
inline _Value* value_type(const _Rb_tree_iterator<_Value, _Ref, _Ptr>&) {
return (_Value*) 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
//@ 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(),
//@ __rb_tree_rebalance(), __rb_tree_rebalance_for_erase()
//@ 新节点必须为红色节点。如果安插处的父节点为红色,就违反了红黑色规则
//@ 此时要旋转和改变颜色
//@ 左旋转
//@ 节点x为左旋转点
inline void
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_right; //@ 获取左旋转节点x的右孩子y
__x->_M_right = __y->_M_left; //@ 把y节点的左孩子作为旋转节点x的右孩子
if (__y->_M_left !=0)
__y->_M_left->_M_parent = __x; //@ 更新节点y左孩子父节点指针,指向新的父节点x
__y->_M_parent = __x->_M_parent; //@ y节点替换x节点的位置
//@ 令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root)//若原始位置节点x是根节点
__root = __y;//则y为新的根节点
//@ 否则,若x节点是其父节点的左孩子
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y; //@ 则更新节点y为原始x父节点的左孩子
else //@ 若x节点是其父节点的右孩子
__x->_M_parent->_M_right = __y; //@ 则更新节点y为原始x父节点的右孩子
__y->_M_left = __x; //@ 旋转后旋转节点x作为节点y的左孩子
__x->_M_parent = __y; //@ 更新x节点的父节点指针
}
//@ 右旋转
//@ 节点x为右旋转点
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_left; //@ 获取右旋转节点x的左孩子y
__x->_M_left = __y->_M_right; //@ 把y节点的右孩子作为旋转节点x的左孩子
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x; //@ 更新节点y右孩子父节点指针,指向新的父节点x
__y->_M_parent = __x->_M_parent; //@ y节点替换x节点的位置
//@ 令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root) //@ 若原始位置节点x是根节点
__root = __y; //@ 则y为新的根节点
//@ 否则,若x节点是其父节点的右孩子
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y; //@ 则更新节点y为原始x父节点的右孩子
else //@ 若x节点是其父节点的左孩子
__x->_M_parent->_M_left = __y; //@ 则更新节点y为原始x父节点的左孩子
__y->_M_right = __x; //@ 旋转后旋转节点x作为节点y的右孩子
__x->_M_parent = __y; //@ 更新x节点的父节点指针
}
//@ 重新令RB-tree平衡(改变颜色和旋转)
//@ 参数一为新增节点x,参数二为root节点
inline void
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
__x->_M_color = _S_rb_tree_red;//@ 新插入的节点必须为红色,这样不会违反性质5.
//@ 若新插入节点不是为RB-Tree的根节点,且其父节点color属性也是红色,即违反了性质4.
//@ 则进入while循环.
//@ 此时根据节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子还是右孩子进行讨论,
//@ 但是左右孩子之间是对称的,所以思想是类似的.
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
//@ case1:节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
//@ 节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _S_rb_tree_red) {//@ 情况1:若其叔叔节点y存在,且为红色
/*
此时x->parent和y都是红色的,解决办法是将x的父节点x->parent和叔叔结点y都着为黑色,
而将x的祖父结点x->parent->parent着为红色,
然后从祖父结点x->parent->parent继续向上判断是否破坏红黑树的性质。
*/
__x->_M_parent->_M_color = _S_rb_tree_black;//将其父节点x->parent改变成黑色
__y->_M_color = _S_rb_tree_black;//@ 将其叔叔节点y改变成黑色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//@ 将其祖父节点变成红色
//@ 把祖父节点作为当前节点,一直上溯,继续判断是否破坏RB-Tree性质.
__x = __x->_M_parent->_M_parent;
}
else {//@ 若无叔叔节点或者其叔叔节点y为黑色
/*
情况2:x的叔叔节点y是黑色且x是一个右孩子
情况3:x的叔叔节点y是黑色且x是一个左孩子
情况2和情况3中y都是黑色的,通过x是parent[x]的左孩子还是右孩子进行区分的。
情况2中x是右孩子,可以在parent[x]结点将情况2通过左旋转为情况3,使得x变为左孩子。
无论是间接还是直接的通过情况2进入到情况3,x的叔叔y总是黑色的。
在情况3中,将parent[x]着为黑色,parent[parent[x]]着为红色,然后从parent[parent[x]]处进行一次右旋转。
情况2、3修正了对性质4的违反,修正过程不会导致其他的红黑性质被破坏。
*/
if (__x == __x->_M_parent->_M_right) {//@ 若节点x为其父节点x->parent的右孩子
//@ 则以其父节点作为旋转节点
//@ 进行一次左旋转
__x = __x->_M_parent;
_Rb_tree_rotate_left(__x, __root);
//@ 旋转之后,节点x变成其父节点的左孩子
}
//@ 改变其父节点x->parent颜色
__x->_M_parent->_M_color = _S_rb_tree_black;
//@ 改变其祖父节点x->parent->parent颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
//@ 对其祖父节点进行一次右旋转
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
}
}
//@ case2:节点x的父节点x->parent是其祖父节点x->parent->parent的右孩子
//@ 这种情况是跟上面的情况(父节点为其祖父节点的左孩子)是对称的.
else {
//@ 节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _S_rb_tree_red) {//@ 若叔叔节点存在,且为红色
__x->_M_parent->_M_color = _S_rb_tree_black;//@ 改变父节点颜色
__y->_M_color = _S_rb_tree_black;//@ 改变叔叔节点颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//@ 改变祖父节点颜色
__x = __x->_M_parent->_M_parent;//@ 上溯祖父节点,判断是否违背RB-Tree的性质
}
else {//@ 若叔叔节点不存在或叔叔节点为黑色
if (__x == __x->_M_parent->_M_left) {//@ 新节点x为其父节点的左孩子
//@ 对其父节点进行一次右旋转
__x = __x->_M_parent;
_Rb_tree_rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;//@ 改变父节点颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//@ 改变祖父节点颜色
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);//@ 进行一次左旋转
}
}
}
//@ 若新插入节点为根节点,则违反性质2
//@ 只需将其重新赋值为黑色即可
__root->_M_color = _S_rb_tree_black;
}
//@ 删除节点
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost)
{
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x = 0;
_Rb_tree_node_base* __x_parent = 0;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left != 0)
__y = __y->_M_left;
__x = __y->_M_right;
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
__STD::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
if (__rightmost == __z)
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) &&
(__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) &&
(__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
}
// Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators. In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class.
//@ 以下是对内存分配的管理
#ifdef __STL_USE_STD_ALLOCATORS
// _Base for general standard-conforming allocators.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }//@ 空间配置器的类型
_Rb_tree_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_header(0) {}
protected:
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
_M_node_allocator;
_Rb_tree_node<_Tp>* _M_header;//@ 定义头指针,指向Rb_tree的根节点
_Rb_tree_node<_Tp>* _M_get_node() //@ 分配一个节点空间
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p) //@ 释放一个节点空间
{ _M_node_allocator.deallocate(__p, 1); }
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
protected:
_Rb_tree_node<_Tp>* _M_header;
typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
_Alloc_type;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
};
//@ RB-Tree基本结构,即基类,继承_Rb_tree_alloc_base
template <class _Tp, class _Alloc>
struct _Rb_tree_base
: public _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Rb_tree_base(const allocator_type& __a)
: _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
};
#else /* __STL_USE_STD_ALLOCATORS */
//@ RB-Tree基本结构,即基类,没有继承_Rb_tree_alloc_base
template <class _Tp, class _Alloc>
struct _Rb_tree_base
{
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_base(const allocator_type&)
: _M_header(0) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
protected:
_Rb_tree_node<_Tp>* _M_header;//@ 定义头指针节点,指向根节点
typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
};
#endif /* __STL_USE_STD_ALLOCATORS */
//@ RB-Tree类的定义,继承基类_Rb_tree_base
template <class _Key, class _Value, class _KeyOfValue, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef _Rb_tree_node<_Value> _Rb_tree_node;
typedef _Rb_tree_Color_type _Color_type;
public:
typedef _Key key_type;
typedef _Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node* _Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
protected:
#ifdef __STL_USE_NAMESPACES
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_header;//@ 这里是指向根节点的节点指针
#endif /* __STL_USE_NAMESPACES */
protected:
//@ 创建节点并对其初始化为x
_Link_type _M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();//@ 分配一个节点空间
__STL_TRY {
construct(&__tmp->_M_value_field, __x);//@ 构造对象
}
__STL_UNWIND(_M_put_node(__tmp));
return __tmp;
}
//@ 复制节点的值和颜色
_Link_type _M_clone_node(_Link_type __x)
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
//@ 释放节点
void destroy_node(_Link_type __p)
{
destroy(&__p->_M_value_field);//@ 析构对象
_M_put_node(__p);//@ 释放节点空间
}
protected:
size_type _M_node_count; // keeps track of size of tree
_Compare _M_key_compare; //@ 节点键值比较准则
//@ 下面三个函数是用来获取header的成员
_Link_type& _M_root() const
{ return (_Link_type&) _M_header->_M_parent; }
_Link_type& _M_leftmost() const
{ return (_Link_type&) _M_header->_M_left; }
_Link_type& _M_rightmost() const
{ return (_Link_type&) _M_header->_M_right; }
//@ 下面六个函数获取节点x的成员
static _Link_type& _S_left(_Link_type __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Link_type __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Link_type __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Link_type __x)
{ return __x->_M_value_field; }
static const _Key& _S_key(_Link_type __x)
{ return _KeyOfValue()(_S_value(__x)); }
static _Color_type& _S_color(_Link_type __x)
{ return (_Color_type&)(__x->_M_color); }
//@ 跟上面六个函数功能相同,不同的是参数类型不同,一个是基类指针,一个是派生类指针
static _Link_type& _S_left(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Base_ptr __x)
{ return ((_Link_type)__x)->_M_value_field; }
static const _Key& _S_key(_Base_ptr __x)
{ return _KeyOfValue()(_S_value(_Link_type(__x)));}
static _Color_type& _S_color(_Base_ptr __x)
{ return (_Color_type&)(_Link_type(__x)->_M_color); }
//@ RB-Tree的极小值
static _Link_type _S_minimum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
//@ RB-Tree的极大值
static _Link_type _S_maximum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
public:
//@ 迭代器
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
private:
//@ 类的私有成员函数,在后面定义
iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
_Link_type _M_copy(_Link_type __x, _Link_type __p);
void _M_erase(_Link_type __x);
public:
// allocation/deallocation
_Rb_tree()
: _Base(allocator_type()), _M_node_count(0), _M_key_compare()
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp)
: _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _Base(__a), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
: _Base(__x.get_allocator()),
_M_node_count(0), _M_key_compare(__x._M_key_compare)
{
if (__x._M_root() == 0)
_M_empty_initialize();
else {
_S_color(_M_header) = _S_rb_tree_red;
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
}
_M_node_count = __x._M_node_count;
}
~_Rb_tree() { clear(); }
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);
private:
//@ 初始化header
void _M_empty_initialize() {
_S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from
// __root, in iterator.operator++
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
public:
// accessors:
_Compare key_comp() const { return _M_key_compare; }
iterator begin() { return _M_leftmost(); }//@ RB-Tree的起始迭代器为最小节点
const_iterator begin() const { return _M_leftmost(); }
iterator end() { return _M_header; }//@ RB-Tree的结束迭代器为header
const_iterator end() const { return _M_header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
//@ RB-Tree是否为空
bool empty() const { return _M_node_count == 0; }
//@ RB-Tree节点数
size_type size() const { return _M_node_count; }
size_type max_size() const { return size_type(-1); }
//@ 交换两棵RB-Tree的内容
//@ RB-tree只有三个表现成员,所以两棵RB-Tree交换内容时,只需互换这3个成员
void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
__STD::swap(_M_header, __t._M_header);
__STD::swap(_M_node_count, __t._M_node_count);
__STD::swap(_M_key_compare, __t._M_key_compare);
}
public:
// insert/erase
//@ 插入节点,但是节点值必须唯一
pair<iterator,bool> insert_unique(const value_type& __x);
//@ 插入节点,节点值可以与当前RB-Tree节点值相等
iterator insert_equal(const value_type& __x);
//@ 在指定位置插入节点
iterator insert_unique(iterator __position, const value_type& __x);
iterator insert_equal(iterator __position, const value_type& __x);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void insert_unique(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
void insert_equal(_InputIterator __first, _InputIterator __last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator __first, const_iterator __last);
void insert_unique(const value_type* __first, const value_type* __last);
void insert_equal(const_iterator __first, const_iterator __last);
void insert_equal(const value_type* __first, const value_type* __last);
#endif /* __STL_MEMBER_TEMPLATES */
//@ 删除节点
void erase(iterator __position);
size_type erase(const key_type& __x);
void erase(iterator __first, iterator __last);
void erase(const key_type* __first, const key_type* __last);
//@ 清除RB-Tree
void clear() {
if (_M_node_count != 0) {
_M_erase(_M_root());
_M_leftmost() = _M_header;
_M_root() = 0;
_M_rightmost() = _M_header;
_M_node_count = 0;
}
}
public:
// set operations:
iterator find(const key_type& __x);
const_iterator find(const key_type& __x) const;
size_type count(const key_type& __x) const;
iterator lower_bound(const key_type& __x);
const_iterator lower_bound(const key_type& __x) const;
iterator upper_bound(const key_type& __x);
const_iterator upper_bound(const key_type& __x) const;
pair<iterator,iterator> equal_range(const key_type& __x);
pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;
public:
// Debugging.
bool __rb_verify() const;
};
//@ 以下是操作符重载
//@重载operator==运算符,使用的是STL泛型算法
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return __x.size() == __y.size() &&
//@ STL的算法equal(__x.begin(), __x.end(), __y.begin());
equal(__x.begin(), __x.end(), __y.begin());
}
//@ 重载operator<运算符,使用的是STL泛型算法
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0) {
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
else {
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{//@ 参数x_为新值插入点,参数y_为插入点之父节点,参数v 为新值
_Link_type __x = (_Link_type) __x_;
_Link_type __y = (_Link_type) __y_;
_Link_type __z;
if (__y == _M_header || __x != 0 ||
_M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
__z = _M_create_node(__v);//@ 创建值为v的节点z
_S_left(__y) = __z; // also makes _M_leftmost() = __z
// when __y == _M_header
if (__y == _M_header) {
_M_root() = __z;
_M_rightmost() = __z;
}
else if (__y == _M_leftmost())//@ 若y为最左节点
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
}
else {
__z = _M_create_node(__v);
_S_right(__y) = __z;
if (__y == _M_rightmost())
_M_rightmost() = __z; // maintain _M_rightmost() pointing to max node
}
_S_parent(__z) = __y;//@ 设定新节点的父节点
_S_left(__z) = 0;//@ 设定新节点的左孩子
_S_right(__z) = 0;//@ 设定新节点的右孩子
_Rb_tree_rebalance(__z, _M_header->_M_parent);//@ 调整RB-Tree使其满足性质
++_M_node_count;//@ 节点数增加1
return iterator(__z);//@ 返回新节点迭代器
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_equal(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();//从根节点开始
while (__x != 0) {//@ 从根节点开始,往下寻找合适插入点
__y = __x;
//@ 判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert(__x, __y, __v);
}
//@ 安插新值;节点键值不允许重复,若重复则安插无效。
//@ 注意,传回值是个pair,第一元素是个 RB-tree 迭代器,指向新增节点,
//@ 第二元素表示安插成功与否。
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
bool>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_unique(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();//@ 从根节点开始
bool __comp = true;
while (__x != 0) {//@ 从根节点开始,往下寻找合适插入点
__y = __x;
//@ 判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
//@ 离开while循环之后,y所指即为安插点的父节点,x必为叶子节点
iterator __j = iterator(__y);//@ 令迭代器j指向插入节点之父节点y
if (__comp)//@ 若为真
if (__j == begin())//@ 若插入点之父节点为最左节点
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
else//@ 否则(插入点之父节点不在最左节点)
--__j;//@ 调整j
//@ 小于新值(表示遇「小」,将安插于右侧)
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
//@ 若运行到这里,表示键值有重复,不应该插入
return pair<iterator,bool>(__j, false);
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
::insert_unique(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_unique(__v).first;
} else if (__position._M_node == _M_header) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_unique(__v).first;
} else {
iterator __before = __position;
--__before;
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
&& _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_unique(__v).first;
}
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
::insert_equal(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_equal(__v);
} else if (__position._M_node == _M_header) {// end()
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_equal(__v);
} else {
iterator __before = __position;
--__before;
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
&& !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_equal(__v);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(_II __first, _II __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(_II __first, _II __last) {
for ( ; __first != __last; ++__first)
insert_unique(*__first);
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(const _Val* __first, const _Val* __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(const_iterator __first, const_iterator __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(const _Val* __first, const _Val* __last)
{
for ( ; __first != __last; ++__first)
insert_unique(*__first);
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(const_iterator __first, const_iterator __last)
{
for ( ; __first != __last; ++__first)
insert_unique(*__first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __position)
{
_Link_type __y =
(_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
_M_header->_M_parent,
_M_header->_M_left,
_M_header->_M_right);
destroy_node(__y);
--_M_node_count;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
pair<iterator,iterator> __p = equal_range(__x);
size_type __n = 0;
distance(__p.first, __p.second, __n);
erase(__p.first, __p.second);
return __n;
}
template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
::_M_copy(_Link_type __x, _Link_type __p)
{
// structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node(__x);
__top->_M_parent = __p;
__STL_TRY {
if (__x->_M_right)
__top->_M_right = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0) {
_Link_type __y = _M_clone_node(__x);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
__STL_UNWIND(_M_erase(__top));
return __top;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_erase(_Link_type __x)
{
// erase without rebalancing
while (__x != 0) {
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
destroy_node(__x);
__x = __y;
}
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __first, iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last) erase(__first++);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(const _Key* __first, const _Key* __last)
{
while (__first != __last) erase(*__first++);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
_Link_type __y = _M_header; // Last node which is not less than __k.
_Link_type __x = _M_root(); // Current node.
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
iterator __j = iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
//@ 查找RB树中是否有键值为k的节点
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0) {
if (!_M_key_compare(_S_key(__x), __k))//@ 若k比当前节点x键值小
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
}
const_iterator __j = const_iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
//@ 计算RB树中键值为k的节点的个数
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::count(const _Key& __k) const
{
pair<const_iterator, const_iterator> __p = equal_range(__k);
size_type __n = 0;
distance(__p.first, __p.second, __n);
return __n;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::equal_range(const _Key& __k)
{
return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
}
template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
::equal_range(const _Key& __k) const
{
return pair<const_iterator,const_iterator>(lower_bound(__k),
upper_bound(__k));
}
//@ 计算从 node 至 root路径中的黑节点数量
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
if (__node == 0)
return 0;
else {
int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;//@ 若节点node为黑色,则bc为1
if (__node == __root)//@ 判断node是否为根节点
return __bc;
else
return __bc + __black_count(__node->_M_parent, __root);//@ 递归调用
}
}
//@ 验证己生这棵树是否符合RB树条件
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
//@ 空树
if (_M_node_count == 0 || begin() == end())
return _M_node_count == 0 && begin() == end() &&
_M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
//@ 最左节点到根节点的黑色节点数
int __len = __black_count(_M_leftmost(), _M_root());
//@ 一下走访整个RB树,针对每个节点(从最小到最大)……
for (const_iterator __it = begin(); __it != end(); ++__it) {
_Link_type __x = (_Link_type) __it._M_node;
_Link_type __L = _S_left(__x);
_Link_type __R = _S_right(__x);
if (__x->_M_color == _S_rb_tree_red)//@ 违背性质4
//@ 如果一个节点是红色的,则它的两个孩子节点都是黑色的。
if ((__L && __L->_M_color == _S_rb_tree_red) ||
(__R && __R->_M_color == _S_rb_tree_red))
return false;
//@ 以下是违背二叉查找树性质
//@ 节点的左孩子节点键值小于该节点键值
//@ 节点的右孩子节点键值大于该节点键值
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false;
//@ [叶子结点到root]路径内的黑色节点数,与[最左节点至root]路径内的黑色节点不同。不符合RB树要求
//@ 违背性质5
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false; //@ 最左节点不为最小节点,不符合二叉查找树的要求
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;//@ 最右节点不为最大节点,不符不符合二叉查找树的要求
return true;
}
// Class rb_tree is not part of the C++ standard. It is provided for
// compatibility with the HP STL.
template <class _Key, class _Value, class _KeyOfValue, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
struct rb_tree : public _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>
{
typedef _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc> _Base;
typedef typename _Base::allocator_type allocator_type;
rb_tree(const _Compare& __comp = _Compare(),
const allocator_type& __a = allocator_type())
: _Base(__comp, __a) {}
~rb_tree() {}
};
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_TREE_H */