zoukankan      html  css  js  c++  java
  • LRU cache

      LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。现在要设计一种数据结构有如下几种性质:

    1. 每个节点为一对key,value的形式,可通过get <key>查找,通过put <key, value> 插入

    2. 最大存储节点数为n

    3. put操作时,如果已经存储了n个节点,则要淘汰最近最少使用的那个节点

    可能会有很多种解决方案,例如:

    一、用一个双向链表来存储所有节点,get时,遍历整个链表,找到对应的节点,并且把该节点挪动到链表的第一个位置,因此,链接中越靠前的位置总是距离最后一次访问时间越短的节点,越靠后的位置总是距离最后一次访问时间约久的节点。所以put时,如果已达到最大存储节点数时,直接删除链表最后一个节点再插入即可。总结,优点:实现简单,put操作的时间复杂度为O(1) 缺点:get操作时间复杂度为O(n),不够优秀。

    二、我们都知道哈希表这种数据结构查询的时间性能很好,但是在这里如果只用一个哈希表,虽然查询和插入操作都能优化到O(1),但是在删除,也就是查找最近最少使用的节点时,却不得不遍历整个哈希表。我们来做进一步优化,前面第一种方案删除和插入操作都是O(1)的,但是查询操作是O(n),如果能把这两种方案结合一下的话,三种操作不就都是O(1)时间复杂度了。怎么结合呢?

        哈希表的value存储节点的指针,同时把所有的value连接成一个双向链表,查询操作时,通过哈希表直接找到这个节点的指针,同时,可以在O(1)时间将这个节点移动到链表头部,删除操作时,直接删除链表尾部那个节点,同时将这个节点从哈希表中删除。

    C++实现(这里为了简化操作,直接用了STL的map代替哈希表)

    class LRUCache {
    public:
        struct Node {
            int key, value;
            Node *next, *pre;
        };
        map<int, Node*> cache;
        Node *head, *rear;
        int size;
        
        LRUCache(int capacity) {
            size = capacity;
            head = new Node();
            rear = new Node();
            head->pre = NULL;
            head->next = rear;
            rear->next = NULL;
            rear->pre = head;
        }
    
        int get(int key) {
            if(cache.find(key) == cache.end()) return -1;
            Node *tmp = cache[key];
            tmp->pre->next = tmp->next;
            tmp->next->pre = tmp->pre;
    
            head->next->pre = tmp;
            tmp->next = head->next;
            tmp->pre = head;
            head->next = tmp;
            return tmp->value;
        }
    
        void lru_delete() {
            if(cache.size() == 0) return;
            Node* tmp = rear->pre;
            rear->pre = tmp->pre;
            tmp->pre->next = rear;
            cache.erase(tmp->key);
            delete tmp;
        }
    
        void put(int key, int value) {
            // if the key exist, then just update the value
            if(cache.find(key) != cache.end()) {
                cache[key]->value = value;
                this->get(key);
                return;
            }
    
            if(cache.size() >= this->size) this->lru_delete();
    
            Node *tmp = new Node;
            tmp->key = key;
            tmp->value = value;
            tmp->pre = this->head;
            tmp->next = this->head->next;
            if(head->next != NULL) head->next->pre = tmp;
            this->head->next = tmp;
            cache.insert(pair<int, Node*>(key, tmp));
        }
    };
    View Code
  • 相关阅读:
    《数据挖掘系统支撑下的高考志愿填报在线咨询系统设计与实现》论文笔记(十二)
    《基于本体的高考志愿填报辅助系统的设计与实现》论文笔记(十一)
    20189312任方园《网络攻防》第十次作业
    20189312任方园《网络攻防》第九次作业
    20189312任方园《网络攻防》第八次作业
    20189312任方园《网络攻防》第七次作业
    20189312任方园《网络攻防》第六次作业
    20189312任方园《网络攻防》第五次作业
    20189312任方园《网络攻防》第四次作业
    20189312任方园《网络攻防》第三次作业
  • 原文地址:https://www.cnblogs.com/xiaxiaosheng/p/10773009.html
Copyright © 2011-2022 走看看