实例的所有数据来源于吴恩达教授的机器学习数据,特此感谢。数据源可以前往course下载。
本文主要目地在于绘画二维的散点图,至于scatter的用法可以参见我之前的博客。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression def get_data(file_path): col_names = ['score1','score2','y'] data = pd.read_csv(file_path,delimiter = ",",names=col_names) # x = data.values[:,:-1] # y = data.values[:,-1] return data def draw_OriginPic(data): data0 = data[data['y']==0] data1 = data[data['y']==1] plt.scatter(data0['score1'],data0['score2'],c='r',marker='x',label='Admitted') plt.scatter(data1['score1'],data1['score2'],c='y',marker='o',label='UnAdmitted') plt.title('Scatter plot for trainSet') plt.xlabel('score1') plt.ylabel('score2') plt.legend() # if __name__== '__main__': fileName = "G:\python\machine-learning-ex2\ex2\ex2data1.txt" data = get_data(fileName) draw_OriginPic(data)
很简单的一个实例,主要包括数据的导入导出,以及利用pandas做了一个简单的数据筛选。