zoukankan      html  css  js  c++  java
  • 关于multi-label classification中评价指标的一些理解

    最近在看Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces这篇文章时发现文章采用了一个R@k的评价指标来衡量模型的好坏。
    文章中提到了一句话“R@k is preferred for few- and zero-shot labels, because P@k quickly goes to zero as k increases and gets bigger than the number of group specific labels assigned to each instance.”

    句子含义大致是P@k会随着k的增长迅速变为0,k的值会大于实例的标签组数目。这句话引起了我对P@k和R@k的评价指标的兴趣,搜寻网上博客文章,发现大多都是讲的推荐系统中的R@k,与multi-label classification

    中的R@k定义有所不同,所以在此将个人对于P@k和R@k的理解写出来,便于日后查阅。

    以下文字来自知乎:https://zhuanlan.zhihu.com/p/61459283

    P@k

     

     随着k取值的增大,tp+fp的数目也会增大,预测标签集合的长度可能远远长于真实标签集合,随着k的增大,tp的值达到阈值(训练集中该标签的所有样本数),fp的值不断增加,最终P@k趋近于0,符合paper中的思想

    R@k

    仿照P@k的思路,我们可以思考下R@k随着k值的变化趋势
    recall=TP/(TP+FN),对于k>1的情况,tp的值会先随着k值增加,达到阈值后不变。又因为只要是top-k个预测里面有正确类就可以识别为正类,正类判定为负类的情况(FN)会减少,即TP+FN会减少所以R@k会随着k的增加而上升适用于小样本和零样本场景






     

  • 相关阅读:
    自动发现
    1.1 开启二进制日志
    mysql
    html常见的块元素和行内元素(特别注意个别块元素不能嵌套其他块元素)
    Linux查看物理CPU个数、核数、逻辑CPU个数
    查看linux服务器的系统信息
    谷歌浏览器无法输入中文——解决
    Linux下查看正在使用的端口
    入园第三天-记录
    Visual Studio2015 Community一些必备插件
  • 原文地址:https://www.cnblogs.com/xihongqing/p/15469697.html
Copyright © 2011-2022 走看看