zoukankan      html  css  js  c++  java
  • 递归练习

    There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2). 

    InputInput consists of a sequence of lines, each containing an integer n. (n < 1,000,000). 
    OutputPrint the word "yes" if 3 divide evenly into F(n). 

    Print the word "no" if not. 
    Sample Input

    0
    1
    2
    3
    4
    5

    Sample Output

    no
    no
    yes
    no
    no
    no

    一开始是用递归的,但发现n太大的,就推算了几个,发现了个规律,只要+2并能整除4的都是yes,否则是no
     1 #include <iostream>
     2 #include <cstdio>
     3 
     4 using namespace std;
     5 
     6 int main(){
     7     int n;
     8     while(~scanf("%d",&n)){
     9         if((n+2)%4) cout << "no" << endl;
    10         else cout << "yes" << endl;
    11     }
    12     return 0;
    13 }
    A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. 

    Note: the number of first circle should always be 1. 

     

    Inputn (0 < n < 20). 
    OutputThe output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. 

    You are to write a program that completes above process. 

    Print a blank line after each case. 
    Sample Input

    6
    8

    Sample Output

    Case 1:
    1 4 3 2 5 6
    1 6 5 2 3 4
    
    Case 2:
    1 2 3 8 5 6 7 4
    1 2 5 8 3 4 7 6
    1 4 7 6 5 8 3 2
    1 6 7 4 3 8 5 2

    是一个素数环问题,一开始我也不会做,但听了学长讲后,思路就很清晰了。下面是代码
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cmath>
     4 #include <cstring>
     5 using namespace std;
     6 int a[30], vis[30];
     7 bool prime(int x){
     8     bool flag = true;
     9     for(int i = 2; i <= sqrt(x); i++){
    10         if(x%i==0){
    11             return false;
    12         }
    13     }
    14     if(x >= 2 && flag)
    15         return true;
    16     else return false;
    17 }
    18 void dfs(int n,int m){
    19     if(n >= m && prime(a[0] + a[m-1])){
    20         for(int i = 0; i < m; i ++){
    21           if(i) cout<<' ';
    22             cout << a[i];
    23         }
    24         cout << endl;
    25     }
    26     for(int i = 1; i <= m; i ++){
    27         if(vis[i] == 0){
    28             a[n] = i;
    29             if(n==0 || prime(i+a[n-1])){
    30                 vis[i] = 1;
    31                 dfs(n+1,m);
    32                 vis[i] = 0;
    33             }
    34         }
    35     }
    36 }
    37 
    38 int main(){
    39     int n;
    40     int ans = 1;
    41     while(~scanf("%d",&n)){
    42         memset(a,0,sizeof(a));memset(vis,0,sizeof(vis));
    43         a[0] = 1;vis[1] = 1;
    44         printf("Case %d:
    ",ans++);
    45         dfs(1,n);
    46         cout << endl;
    47     }
    48 }
    有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行。请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数。 
    其中,蜂房的结构如下所示。 
     

    Input输入数据的第一行是一个整数N,表示测试实例的个数,然后是N 行数据,每行包含两个整数a和b(0<a<b<50)。 
    Output对于每个测试实例,请输出蜜蜂从蜂房a爬到蜂房b的可能路线数,每个实例的输出占一行。 
    Sample Input

    2
    1 2
    3 6

    Sample Output

    1
    3

    从a到b,其实可以分解为a到b-1与a到b-2之和,然后一直递归下去,知道b-a等于1或者2返回。
    下面是代码:
     1 #include <iostream>
     2 #define ll long long
     3 using namespace std;
     4 ll arr[55];
     5 int main(){
     6     int n;
     7     arr[1] = 1;arr[2] = 2;
     8     for(int i = 3; i < 52; i ++)
     9         arr[i] = arr[i-1] + arr[i-2];
    10     cin >> n;
    11     int a,b;
    12     while(n--){
    13         cin >> a >> b;
    14         cout << arr[b-a] << endl;
    15     }
    16     return 0;
    17 }
    There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like 
    FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM 
    Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children? 

    InputThere are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)OutputFor each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.

    Sample Input

    1
    2
    3

    Sample Output

    1
    2
    4

    将情况分为在n-1后追加一位人,
    ①追加一位男孩,这是肯定成立的,既a[n-1]
    ②追加一位女孩。
      如果是追加一位女孩,那第n-2个一定要是一位女孩。所以第②中情况有可以分成在n-2后追加两位女孩,既a[n-2]。
      但如果n-3是一位女孩话(不合法的),在n-2后追加两位女孩也变成合法了,而这种是n-4合法的加一位男孩和一位女孩造成的,既a[n-4]。
    所以规律就是a[n] = a[n-1] + a[n-2] + a[n-4],先把前四个数字算出来,就可以打表了。

    下面是代码:
    #include <iostream>
    #include <cstdio>
    #include <map>
    #include <algorithm>
    #include <cstring>
    #define ll long long
    using namespace std;
    string arr[1010];
    map<char,int> mp;
    string f(string s,string ss){//这函数就是大数加法的,我写的有点长,请见谅!
        reverse(s.begin(),s.end());
        reverse(ss.begin(),ss.end());
        if(s.length()>ss.length())
            swap(s,ss);
        int a,b,sum,flags=0;
        string sss;
        for(int i=0;i<ss.length();++i){
            if(i>=s.length())
                a=0;
            else a=mp[s[i]];
            b=mp[ss[i]];
            sum=a+b+flags;
            if(sum>=10){
                sum-=10;
                flags=1;
            }
            else flags=0;
          //  v.push_back(sum);
            sss += '0' + sum;
        }
        if(flags)
            sss += '1';
        reverse(sss.begin(),sss.end());
        return sss;
    }
    int main(){
        int n;
        for(int i = 0; i < 10; i ++)
            mp['0'+i] = i;
        arr[0] = "1";arr[1] = "1";
        arr[2] = "2";arr[3] = "4";
        for(int i = 4; i < 1010; i++){
            arr[i] = f(f(arr[i-1], arr[i-2]),arr[i-4]);
        }
        //cout << arr[1000] << endl;
        while(~scanf("%d",&n)){
            cout << arr[n] << endl;
        }
        return 0;
    }
    度熊面前有一个全是由1构成的字符串,被称为全1序列。你可以合并任意相邻的两个1,从而形成一个新的序列。对于给定的一个全1序列,请计算根据以上方法,可以构成多少种不同的序列。

    Input这里包括多组测试数据,每组测试数据包含一个正整数NN,代表全1序列的长度。 

    1≤N≤200
    对于每组测试数据,输出一个整数,代表由题目中所给定的全1序列所能形成的新序列的数量。

    Sample Input

    1
    3
    5

    Sample Output

    1
    3
    8

    这题的规律就是a[n] = a[n-1] + a[n-2] 不过数字有点大,要用到大数加法。
    下面是我的代码:

     1 #include <iostream>
     2 #include <vector>
     3 #include <cstring>
     4 #include <map>
     5 #include <algorithm>
     6 #define ll long long
     7 using namespace std;
     8 map<char,int> mp;
     9 vector<int> v;
    10 string f(string s,string ss){
    11     reverse(s.begin(),s.end());
    12     reverse(ss.begin(),ss.end());
    13     if(s.length()>ss.length())
    14         swap(s,ss);
    15     int a,b,sum,flags=0;
    16     string sss;
    17     for(int i=0;i<ss.length();++i){
    18         if(i>=s.length())
    19             a=0;
    20         else a=mp[s[i]];
    21         b=mp[ss[i]];
    22         sum=a+b+flags;
    23         if(sum>=10){
    24             sum-=10;
    25             flags=1;
    26         }
    27         else flags=0;
    28       //  v.push_back(sum);
    29         sss += '0' + sum;
    30     }
    31     if(flags)
    32         sss += '1';
    33     reverse(sss.begin(),sss.end());
    34     return sss;
    35 }
    36 
    37 int main(){
    38     for(int i = 0; i < 10; i ++){
    39         mp['0'+i] = i;
    40     }
    41     string arr[210];
    42     //cout << f("111","222")<< endl;
    43     arr[1] = "1"; arr[2] = "2";
    44     for(int i = 3; i < 201; i++){
    45         arr[i] = f(arr[i-1], arr[i-2]);
    46     }
    47     int n;
    48     while(cin >> n){
    49         cout << arr[n] << endl;
    50     }
    51     return 0;
    52 }
    把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

    Input

    第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

    Output

    对输入的每组数据M和N,用一行输出相应的K。

    Sample Input

    1
    7 3
    

    Sample Output

    8

    典型的递归问题,把问题拆分成一个一个的小问题然后在说答案,下面是我的代码:

     1 #include <iostream>
     2 #define ll long long
     3 using namespace std;
     4 ll f(int m, int n){
     5     int ans = 0;
     6     if(m==0 || n==1) return 1;
     7     if(n > m) return f(m, m);
     8     else return f(m, n -1) + f(m-n, n);
     9 }
    10 int main(){
    11     int t, m, n;
    12     cin >> t;
    13     while(t--){
    14         cin >> m >> n;
    15         cout << f(m, n) << endl;
    16     }
    17     return 0;
    18 }


  • 相关阅读:
    Android特色开发(3):Google Map
    Android特色开发(4):桌面组件
    Android用户界面开发(19):ProgressBar
    每日英语:Fewer Foreigners Eye US Graduate Science Programs
    每日英语:My Adventures With Liquid Chicken
    每日英语:Hard Math: Adding Up Just How Little We Actually Move
    每日英语:Thousands of Thumbs Down for Chinese Red Cross
    每日英语:Rescuers Struggle to Reach Quake Victims
    每日英语:When Simplicity Is The Solution
    【转】Matlab图像处理函数:regionprops
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/6581023.html
Copyright © 2011-2022 走看看