zoukankan      html  css  js  c++  java
  • UVA11388 GCD LCM

    链接点这儿

    题目:

    The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both the integers. A positive integer can be the GCD of many pairs of numbers. Similarly, it can be the LCM of many pairs of numbers. In this problem, you will be given two positive integers. You have to output a pair of numbers whose GCD is the first number and LCM is the second number.

    Input The first line of input will consist of a positive integer T. T denotes the number of cases. Each of the next T lines will contain two positive integer, G and L. Output For each case of input, there will be one line of output. It will contain two positive integers a and b, a ≤ b, which has a GCD of G and LCM of L. In case there is more than one pair satisfying the condition, output the pair for which a is minimized. In case there is no such pair, output ‘-1’. Constraints • T ≤ 100 • Both G and L will be less than 231 .

    Sample Input 2 1 2 3 4

    Sample Output 1 2 -

    题目大意:

    其实就是说,给你两个数的GCD和LCM,让你求一种小的那个数尽可能的小,并大的在这个基础上也尽可能的小的那两个数。

    先上代码!

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int t;
     4 long long a,b,c,d,ans[101][3];
     5 int main()
     6 {
     7     cin>>t;
     8     for(int i=1;i<=t;i++)
     9     {
    10         cin>>a>>b;
    11         if(b%a==0)//如果GCD可被LCM整除 
    12         {
    13             ans[i][1]=a;
    14             ans[i][2]=b;
    15             continue;
    16         }
    17         else ans[i][1]=-1;
    18     }
    19     for(int i=1;i<=t;i++)
    20     if(ans[i][1]==-1)
    21     printf("-1
    ");
    22     else
    23     printf("%lld %lld
    ",ans[i][1],ans[i][2]);
    24     return 0;
    25 }

    为什么可以这么写呢?下面我详细讲一讲:

    证明:

    我们先看到第11行的if语句:当GCD可被LCM整除时,两个数为GCD和LCM。

    我们设两个数分别为a,b。(a<=b)

    首先我们知道,GCD一定可以被a和b整除,而a和b又可以被LCM整除,所以GCD一定可被LCM整除。

    而我们又知道,当一个数x可被y整除时,他们的GCD为x,LCM为y

    又因为GCD*k=a(k>=1&&k==int(k)),所以a>=GCD,最小值为GCD。

    所以我们这里就设a为最小值。(也就是a=GCD)

    我们确定了a以后,又根据公式:GCD*LCM=a*b,其中GCD,a,LCM已知,所以b的值一定是固定的,而且就等于LCM。

    所以当a取最小值(a=GCD(a,b),b=LCM(a,b))时,(a,b)为符合要求的最优解。

    证毕。

    第11行证完了之后,我们再来证第17行的else语句。

    其实还是利用GCD一定可以被a和b整除,而a和b又可以被LCM整除,所以GCD一定可被LCM整除这个原理。

    所以一定无解。

    证毕。

    这个时候我们就证完了。O(t)算法(其实可以算是O(1))。

    如果你觉得你有更巧妙的方法,欢迎在下方留言。

  • 相关阅读:
    __str__和__repr__
    面向对象进阶实战之选课系统
    面向对象总结
    反射(hasattr和getattr和setattr和delattr)
    类和对象的绑定方法及非绑定方法
    -bash: mysql: command not found 解决办法 (转)
    C++类的const成员函数、默认的构造函数、复制形参调用函数(转)
    Zend Framework学习日记(2)--HelloWorld篇(转)
    Zend Framework学习日记(1)--环境搭建篇(转)
    用C/C++扩展你的PHP(转)
  • 原文地址:https://www.cnblogs.com/xinxiyuan/p/11332841.html
Copyright © 2011-2022 走看看