zoukankan      html  css  js  c++  java
  • hdu 3915 高斯消元

    Game

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 724    Accepted Submission(s): 285


    Problem Description
      Mr.Frost is a child who is too simple, sometimes naive, always plays some simple but interesting games with his friends. Today,he invents a new game again:
      At the beginning of the game they pick N (1<=N<=100) piles of stones, Mr.Frost and his friend move the stones in turn. At each step of the game, the player chooses a pile, removes at least one stone from the pile, the first player can’t make a move, and loses. So smart is the friends of Mr.Frost that Mr.Frost always loses. Having been a loser for too many times, he wants to play a trick. His plan is to remove some piles, and then he can find a way to make sure that he would be the winner after his friends remove stones first.

    Now, he wants to know how many ways to remove piles which are able to achieve his purpose. If it’s impossible to find any way, please print “-1”.
     
    Input
    The first line contains a single integer t (1<=t<=20), that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer N (1 <= N <= 100), representing the number of the piles. The next n lines, each of which has a positive integer Ai(1<=Ai<=2^31 - 1) represent the number of stones in this pile.
     
    Output
      For each case, output a line contains the number of the way mod 1000007, If it’s impossible to find any way, please print “-1”.
     
    Sample Input
    2
    2
    1
    1
    3
    1
    2
    3
     
    Sample Output
    2
    2
     
    Source

    题目大意:求有多少方法拿走一些堆的石头,使得先手必胜。

    解题思路:构造m*n的矩阵(最多31行),高斯消元求秩r,2^(m-r)即为答案。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 using namespace std;
     6 
     7 typedef __int64 LL;
     8 const int mod=1000007;
     9 int A[105][35],maxm;
    10 void swap(int &a,int &b){int t=a;a=b;b=t;}
    11 int max(int a,int b){return a>b?a:b;}
    12 
    13 void build_matrix(int n)
    14 {
    15     memset(A,0,sizeof(A));
    16     maxm=-1;
    17     for(int i=0;i<n;i++)
    18     {
    19         int temp;
    20         scanf("%d",&temp);
    21         for(int j=0;;j++)
    22         {
    23             if(!temp) break;
    24             A[j][i]=temp%2;temp/=2;
    25             maxm=max(maxm,j);
    26         }
    27     }
    28 }
    29 
    30 int gauss(int n,int m)
    31 {
    32     int i=0,j=0,k,r,u;
    33     while(i<n&&j<m)
    34     {
    35         r=i;
    36         for(k=i;k<n;k++)
    37             if(A[k][j]){r=k;break;}
    38         if(A[r][j])
    39         {
    40             if(r!=i) for(k=0;k<=m;k++) swap(A[r][k],A[i][k]);
    41             for(u=i+1;u<n;u++) if(A[u][j])
    42             for(k=i;k<=m;k++) A[u][k]^=A[i][k];
    43                 i++;
    44         }
    45         j++;
    46     }
    47     return i;
    48 }
    49 
    50 LL pow_mod(LL a,LL b)
    51 {
    52     LL ret=1;a%=mod;
    53     while(b)
    54     {
    55         if(b&1) ret=ret*a%mod;
    56         a=a*a%mod;
    57         b>>=1;
    58     }
    59     return ret;
    60 }
    61 int main()
    62 {
    63     int t,n;
    64     scanf("%d",&t);
    65     while(t--)
    66     {
    67         scanf("%d",&n);
    68         build_matrix(n);
    69         int ans=gauss(maxm+1,n);
    70         printf("%d
    ",pow_mod(2,n-ans));
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    多个数字和数字字符串混合运算规则
    关于js对象引用的小例子
    实现函数 isInteger(x) 来判断 x 是否是整数
    写一个少于 80 字符的函数,判断一个字符串是不是回文字符串
    关于数组排序
    事件委托(事件代理)的原理以及优缺点是什么?
    将url的查询参数解析成字典对象
    js dom操作获取节点的一些方法
    js中arguments的应用
    深度克隆---js对象引用
  • 原文地址:https://www.cnblogs.com/xiong-/p/3913730.html
Copyright © 2011-2022 走看看