zoukankan      html  css  js  c++  java
  • 【tensorflow2.0】特征列feature_column

    特征列 通常用于对结构化数据实施特征工程时候使用,图像或者文本数据一般不会用到特征列。

    一,特征列用法概述

    使用特征列可以将类别特征转换为one-hot编码特征,将连续特征构建分桶特征,以及对多个特征生成交叉特征等等。

    要创建特征列,请调用 tf.feature_column 模块的函数。该模块中常用的九个函数如下图所示,所有九个函数都会返回一个 Categorical-Column 或一个 Dense-Column 对象,但却不会返回 bucketized_column,后者继承自这两个类。

    注意:所有的Catogorical Column类型最终都要通过indicator_column转换成Dense Column类型才能传入模型!

    • numeric_column 数值列,最常用。
    • bucketized_column 分桶列,由数值列生成,可以由一个数值列出多个特征,one-hot编码。
    • categorical_column_with_identity 分类标识列,one-hot编码,相当于分桶列每个桶为1个整数的情况。
    • categorical_column_with_vocabulary_list 分类词汇列,one-hot编码,由list指定词典。
    • categorical_column_with_vocabulary_file 分类词汇列,由文件file指定词典。
    • categorical_column_with_hash_bucket 哈希列,整数或词典较大时采用。
    • indicator_column 指标列,由Categorical Column生成,one-hot编码
    • embedding_column 嵌入列,由Categorical Column生成,嵌入矢量分布参数需要学习。嵌入矢量维数建议取类别数量的 4 次方根。
    • crossed_column 交叉列,可以由除categorical_column_with_hash_bucket的任意分类列构成。

    二,特征列使用范例

    以下是一个使用特征列解决Titanic生存问题的完整范例。

    import datetime
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    import tensorflow as tf
    from tensorflow.keras import layers,models
     
     
    # 打印日志
    def printlog(info):
        nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        print("
    "+"=========="*8 + "%s"%nowtime)
        print(info+'...
    
    ')
     
     
     
    # ================================================================================
    # 一,构建数据管道
    # ================================================================================
    printlog("step1: prepare dataset...")
     
     
    dftrain_raw = pd.read_csv("./data/titanic/train.csv")
    dftest_raw = pd.read_csv("./data/titanic/test.csv")
     
    dfraw = pd.concat([dftrain_raw,dftest_raw])
     
    def prepare_dfdata(dfraw):
        dfdata = dfraw.copy()
        dfdata.columns = [x.lower() for x in dfdata.columns]
        dfdata = dfdata.rename(columns={'survived':'label'})
        dfdata = dfdata.drop(['passengerid','name'],axis = 1)
        for col,dtype in dict(dfdata.dtypes).items():
            # 判断是否包含缺失值
            if dfdata[col].hasnans:
                # 添加标识是否缺失列
                dfdata[col + '_nan'] = pd.isna(dfdata[col]).astype('int32')
                # 填充
                if dtype not in [np.object,np.str,np.unicode]:
                    dfdata[col].fillna(dfdata[col].mean(),inplace = True)
                else:
                    dfdata[col].fillna('',inplace = True)
        return(dfdata)
     
    dfdata = prepare_dfdata(dfraw)
    dftrain = dfdata.iloc[0:len(dftrain_raw),:]
    dftest = dfdata.iloc[len(dftrain_raw):,:]
     
     
     
    # 从 dataframe 导入数据 
    def df_to_dataset(df, shuffle=True, batch_size=32):
        dfdata = df.copy()
        if 'label' not in dfdata.columns:
            ds = tf.data.Dataset.from_tensor_slices(dfdata.to_dict(orient = 'list'))
        else: 
            labels = dfdata.pop('label')
            ds = tf.data.Dataset.from_tensor_slices((dfdata.to_dict(orient = 'list'), labels))  
        if shuffle:
            ds = ds.shuffle(buffer_size=len(dfdata))
        ds = ds.batch(batch_size)
        return ds
     
    ds_train = df_to_dataset(dftrain)
    ds_test = df_to_dataset(dftest)
    # ================================================================================
    # 二,定义特征列
    # ================================================================================
    printlog("step2: make feature columns...")
     
    feature_columns = []
     
    # 数值列
    for col in ['age','fare','parch','sibsp'] + [
        c for c in dfdata.columns if c.endswith('_nan')]:
        feature_columns.append(tf.feature_column.numeric_column(col))
     
    # 分桶列
    age = tf.feature_column.numeric_column('age')
    age_buckets = tf.feature_column.bucketized_column(age, 
                 boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
    feature_columns.append(age_buckets)
     
    # 类别列
    # 注意:所有的Catogorical Column类型最终都要通过indicator_column转换成Dense Column类型才能传入模型!!
    sex = tf.feature_column.indicator_column(
          tf.feature_column.categorical_column_with_vocabulary_list(
          key='sex',vocabulary_list=["male", "female"]))
    feature_columns.append(sex)
     
    pclass = tf.feature_column.indicator_column(
          tf.feature_column.categorical_column_with_vocabulary_list(
          key='pclass',vocabulary_list=[1,2,3]))
    feature_columns.append(pclass)
     
    ticket = tf.feature_column.indicator_column(
         tf.feature_column.categorical_column_with_hash_bucket('ticket',3))
    feature_columns.append(ticket)
     
    embarked = tf.feature_column.indicator_column(
          tf.feature_column.categorical_column_with_vocabulary_list(
          key='embarked',vocabulary_list=['S','C','B']))
    feature_columns.append(embarked)
     
    # 嵌入列
    cabin = tf.feature_column.embedding_column(
        tf.feature_column.categorical_column_with_hash_bucket('cabin',32),2)
    feature_columns.append(cabin)
     
    # 交叉列
    pclass_cate = tf.feature_column.categorical_column_with_vocabulary_list(
              key='pclass',vocabulary_list=[1,2,3])
     
    crossed_feature = tf.feature_column.indicator_column(
        tf.feature_column.crossed_column([age_buckets, pclass_cate],hash_bucket_size=15))
     
    feature_columns.append(crossed_feature)
     
    # ================================================================================
    # 三,定义模型
    # ================================================================================
    printlog("step3: define model...")
     
    tf.keras.backend.clear_session()
    model = tf.keras.Sequential([
      layers.DenseFeatures(feature_columns), #将特征列放入到tf.keras.layers.DenseFeatures中!!!
      layers.Dense(64, activation='relu'),
      layers.Dense(64, activation='relu'),
      layers.Dense(1, activation='sigmoid')
    ])
     
    # ================================================================================
    # 四,训练模型
    # ================================================================================
    printlog("step4: train model...")
     
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
     
    history = model.fit(ds_train,
              validation_data=ds_test,
              epochs=10)
    # ================================================================================
    # 五,评估模型
    # ================================================================================
    printlog("step5: eval model...")
     
    model.summary()
     
     
    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
     
    import matplotlib.pyplot as plt
     
    def plot_metric(history, metric):
        train_metrics = history.history[metric]
        val_metrics = history.history['val_'+metric]
        epochs = range(1, len(train_metrics) + 1)
        plt.plot(epochs, train_metrics, 'bo--')
        plt.plot(epochs, val_metrics, 'ro-')
        plt.title('Training and validation '+ metric)
        plt.xlabel("Epochs")
        plt.ylabel(metric)
        plt.legend(["train_"+metric, 'val_'+metric])
        plt.show()
     
    plot_metric(history,"accuracy")
    ================================================================================2020-04-13 02:29:07
    step1: prepare dataset......
    
    
    
    ================================================================================2020-04-13 02:29:08
    step2: make feature columns......
    
    
    
    ================================================================================2020-04-13 02:29:08
    step3: define model......
    
    
    
    ================================================================================2020-04-13 02:29:08
    step4: train model......
    
    
    Epoch 1/10
    23/23 [==============================] - 0s 21ms/step - loss: 0.7117 - accuracy: 0.6615 - val_loss: 0.5706 - val_accuracy: 0.7039
    Epoch 2/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.5920 - accuracy: 0.7022 - val_loss: 0.6129 - val_accuracy: 0.6648
    Epoch 3/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.6388 - accuracy: 0.7079 - val_loss: 0.5196 - val_accuracy: 0.7374
    Epoch 4/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.5950 - accuracy: 0.7219 - val_loss: 0.5028 - val_accuracy: 0.7318
    Epoch 5/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.5166 - accuracy: 0.7486 - val_loss: 0.4975 - val_accuracy: 0.7318
    Epoch 6/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.5260 - accuracy: 0.7612 - val_loss: 0.5045 - val_accuracy: 0.7821
    Epoch 7/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.4957 - accuracy: 0.7697 - val_loss: 0.4756 - val_accuracy: 0.7709
    Epoch 8/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.4848 - accuracy: 0.7837 - val_loss: 0.4532 - val_accuracy: 0.8045
    Epoch 9/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.4636 - accuracy: 0.8006 - val_loss: 0.4561 - val_accuracy: 0.7989
    Epoch 10/10
    23/23 [==============================] - 0s 3ms/step - loss: 0.4784 - accuracy: 0.7907 - val_loss: 0.4722 - val_accuracy: 0.7821
    
    ================================================================================2020-04-13 02:29:11
    step5: eval model......
    
    
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    dense_features (DenseFeature multiple                  64        
    _________________________________________________________________
    dense (Dense)                multiple                  3008      
    _________________________________________________________________
    dense_1 (Dense)              multiple                  4160      
    _________________________________________________________________
    dense_2 (Dense)              multiple                  65        
    =================================================================
    Total params: 7,297
    Trainable params: 7,297
    Non-trainable params: 0
    _________________________________________________________________

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    bzoj1951 [Sdoi2010]古代猪文
    bzoj2693 jzptab
    数学一本通第三章总结
    poj1019 Number Sequence
    SGU179 Brackets light
    字母组合2
    字母组合
    Java基础知识强化之集合框架笔记09:Collection集合迭代器使用的问题探讨
    Java基础知识强化之集合框架笔记08:Collection集合自定义对象并遍历案例(使用迭代器)
    Java基础知识强化之集合框架笔记07:Collection集合的遍历之迭代器遍历
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12689791.html
Copyright © 2011-2022 走看看