zoukankan      html  css  js  c++  java
  • pycaret模型分析之绘制模型结果

    分析训练完成的机器学习模型的性能是任何机器学习工作流程中必不可少的步骤。 在PyCaret中分析模型性能就像编写plot_model一样简单。 该函数将受训的模型对象和图的类型作为plot_model函数中的字符串。

    分类:

    Name Plot
    Area Under the Curve ‘auc’
    Discrimination Threshold ‘threshold’
    Precision Recall Curve ‘pr’
    Confusion Matrix ‘confusion_matrix’
    Class Prediction Error ‘error’
    Classification Report ‘class_report’
    Decision Boundary ‘boundary’
    Recursive Feature Selection ‘rfe’
    Learning Curve ‘learning’
    Manifold Learning ‘manifold’
    Calibration Curve ‘calibration’
    Validation Curve ‘vc’
    Dimension Learning ‘dimension’
    Feature Importance ‘feature’
    Model Hyperparameter ‘parameter’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    diabetes = get_data('diabetes')
    
    # Importing module and initializing setup
    from pycaret.classification import *
    clf1 = setup(data = diabetes, target = 'Class variable')
    
    # creating a model
    lr = create_model('lr')
    
    # plotting a model
    plot_model(lr)

    回归:

    Name Plot
    Residuals Plot ‘residuals’
    Prediction Error Plot ‘error’
    Cooks Distance Plot ‘cooks’
    Recursive Feature Selection ‘rfe’
    Learning Curve ‘learning’
    Validation Curve ‘vc’
    Manifold Learning ‘manifold’
    Feature Importance ‘feature’
    Model Hyperparameter ‘parameter’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    boston = get_data('boston')
    
    # Importing module and initializing setup
    from pycaret.regression import *
    reg1 = setup(data = boston, target = 'medv')
    
    # creating a model
    lr = create_model('lr')
    
    # plotting a model
    plot_model(lr)

    聚类:

    Name Plot
    Cluster PCA Plot (2d) ‘cluster’
    Cluster TSnE (3d) ‘tsne’
    Elbow Plot ‘elbow’
    Silhouette Plot ‘silhouette’
    Distance Plot ‘distance’
    Distribution Plot ‘distribution’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    jewellery = get_data('jewellery')
    
    # Importing module and initializing setup
    from pycaret.clustering import *
    clu1 = setup(data = jewellery)
    
    # creating a model
    kmeans = create_model('kmeans')
    
    # plotting a model
    plot_model(kmeans)

    异常检测:

    Name Plot
    t-SNE (3d) Dimension Plot ‘tsne’
    UMAP Dimensionality Plot ‘umap’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    anomalies = get_data('anomaly')
    
    # Importing module and initializing setup
    from pycaret.anomaly import *
    ano1 = setup(data = anomalies)
    
    # creating a model
    iforest = create_model('iforest')
    
    # plotting a model
    plot_model(iforest)

    自然语言处理:

    Name Plot
    Word Token Frequency ‘frequency’
    Word Distribution Plot ‘distribution’
    Bigram Frequency Plot ‘bigram’
    Trigram Frequency Plot ‘trigram’
    Sentiment Polarity Plot ‘sentiment’
    Part of Speech Frequency ‘pos’
    t-SNE (3d) Dimension Plot ‘tsne’
    Topic Model (pyLDAvis) ‘topic_model’
    Topic Infer Distribution ‘topic_distribution’
    Word cloud ‘wordcloud’
    UMAP Dimensionality Plot ‘umap’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    kiva = get_data('kiva')
    
    # Importing module and initializing setup
    from pycaret.nlp import *
    nlp1 = setup(data = kiva, target = 'en')
    
    # creating a model
    lda = create_model('lda')
    
    # plotting a model
    plot_model(lda)

    关联规则挖掘:

    Plot Abbrev. String
    Support, Confidence and Lift (2d) ‘frequency’
    Support, Confidence and Lift (3d) ‘distribution’

    例子:

    # Importing dataset
    from pycaret.datasets import get_data
    france = get_data('france')
    
    # Importing module and initializing setup
    from pycaret.arules import *
    arul1 = setup(data = france, transaction_id = 'Invoice', item_id = 'Description')
    
    # creating a model
    model = create_model(metric = 'confidence')
    
    # plotting a model
    plot_model(model)

  • 相关阅读:
    C++设计模式-Bridge桥接模式
    解决VS2010打开Web页面时经常由于内存较低而导致VS2010自动关闭的问题
    Js继承小结
    MAC上的包管理利器
    Objective-C的hook方案(一): Method Swizzling
    OleContainer操作Excel以二进制方式读写数据库
    复制文件时,如何显示进度条(使用TFileStream一点一点读,或者使用BlockRead,并插入application.ProcessMessages)
    ADO异步查询显示进度条
    D2010 RTTI + Attribute 简单实现ORM
    Delphi默认窗体随想
  • 原文地址:https://www.cnblogs.com/xiximayou/p/13799181.html
Copyright © 2011-2022 走看看