zoukankan      html  css  js  c++  java
  • 应用统计学

    应用统计学

    第一组:

    一、 计算题

    1、下表中的数据是主修信息系统专业并获得企业管理学士学位的学生,毕业后的月薪(用y表示)和他在校学习时的总评分(用x表示)的回归方程。

    总评分 月薪/美元 总评分 月薪/美元

    2.6 2800 3.2 3000

    3.4 3100 3.5 3400

    3.6 3500 2.9 3100

    2、设总体X的概率密度函数为

    其中 为未知参数, 是来自X的样本。

    (1)试求 的极大似然估计量 ;

    (2)试验证是 的无偏估计量。

    二、简答题

    1. 在统计假设检验中,如果轻易拒绝了原假设会造成严重后果时,应取显著性水平较大还是较小,为什么?

    2. 加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。

    第二组:

    一、 计算题

    1、某地区社会商品零售额资料如下:

    年份 零售额(亿元)y t t2 ty t t2 ty

    1998 21.5 1 1 21.5 -5 25 -107.5

    1999 22.0 2 4 44 -3 9 -66

    2000 22.5 3 9 67.5 -1 1 -22.5

    2001 23.0 4 16 92 1 1 23

    2002 24.0 5 25 120 3 9 72

    2003 25.0 6 36 150 5 25 125

    合计 138.0 21 91 495 0 70 24

    要求:1)用最小平方法配合直线趋势方程:

    2)预测2005年社会商品零售额。(a,b及零售额均保留三位小数,

    2、某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。(写出计算过程,结果精确到0.0001万元人)

    二、 简答题

    1、 表示数据分散程度的特征数有那几种?

    2、 回归分析与相关分析的区别是什么?

    第三组:

    一、 计算题

    1、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:

    每包重量(克) 包数(包)f x xf x-

    (x- )2f

    148—149 10 148.5 1485 -1.8 32.4

    149—150 20 149.5 2990 -0.8 12.8

    150—151 50 150.5 7525 0.2 2.0

    151—152 20 151.5 3030 1.2 28.8

    合计 100 -- 15030 -- 76.0

    要求:(1)计算该样本每包重量的均值和标准差;

    (2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);

    (3)在=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);

    (写出公式、计算过程,标准差及置信上、下保留3位小数)

    2、一种新型减肥方法自称其参加者在第一个星期平均能减去至少8磅体重.由40名使用了该种方法的个人组成一个随机样本,其减去的体重的样本均值为7磅,样本标准差为3.2磅.你对该减肥方法的结论是什么?(α=0.05,μα/2=1.96, μα=1.647)

    二、 简答题

    1、 简述算术平均数、几何平均数、调和平均数的适用范围。

    2、 假设检验的基本依据是什么?

    第四组:

    一、 计算题

    1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。

    Y X 5 10 15 20

    120 0 0 8 10 18

    140 3 4 3 0 10

    fx 3 4 11 10 28

    2、假定某化工原料在处理前和处理后取样得到的含脂率如下表:

    处理前 0.140 0.138 0.143 0.142 0.144 0.137

    处理后 0.135 0.140 0.142 0.136 0.138 0.140

    假定处理前后含脂率都服从正态分布,问处理后与处理前含脂率均值有无显著差异。

    二、 简答题

    1、 为什么要计算离散系数?

    2、 简述普查和抽样调查的特点。

    第五组:

    一、 计算题

    1、设总体X的概率密度函数为

    其中 为未知参数, 是来自X的样本。

    (1)试求 的极大似然估计量 ;

    (2)试验证是 的无偏估计量。

    2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?

    二、 简答题

    1、 统计调查的方法有那几种?

    2、 时期数列与时点数列有哪些不同的特点?

  • 相关阅读:
    主键、外键
    框架学习八:Model查询
    框架学习七:自动验证、填充、字段映射
    框架学习六:ORM方式添加数据
    11.0 C++远征:对象指针
    10.0 C++远征:深拷贝与浅拷贝
    9.0 C++远征:对象成员
    8.0 C++远征:对象数组
    7.0 C++远征:封装小结
    2.0 C++远征:类内定义与内联函数
  • 原文地址:https://www.cnblogs.com/xnjy/p/14021074.html
Copyright © 2011-2022 走看看