zoukankan      html  css  js  c++  java
  • mysql数据库补充知识2 查询数据库记录信息之单表查询

    一 单表查询的语法

    SELECT 字段1,字段2... FROM 表名
                      WHERE 条件
                      GROUP BY field
                      HAVING 筛选
                      ORDER BY field
                      LIMIT 限制条数

    二 关键字的执行优先级(重点)

    重点中的重点:关键字的执行优先级
    from                     #从库中找到某张表
    where            #用where约束条件从表中取出符合条件的数据
    group by          #将取出的一条条记录进行分组group by,如果没有group by,则整体作为一组
    having          #将分组的结果进行having过滤
    select           #执行select
    distinct         #去重
    order by         #将结果按条件排序:order by
    limit           #限制结果的显示条数

    三SELECT语句关键字的定义顺序

    SELECT DISTINCT <select_list>
    FROM <left_table>
    <join_type> JOIN <right_table>
    ON <join_condition>
    WHERE <where_condition>
    GROUP BY <group_by_list>
    HAVING <having_condition>
    ORDER BY <order_by_condition>
    LIMIT <limit_number>

    四 SELECT语句关键字的执行顺序

    
    
    (7)     SELECT 
    (8)     DISTINCT <select_list>
    (1)     FROM <left_table>
    (3)     <join_type> JOIN <right_table>
    (2)     ON <join_condition>
    (4)     WHERE <where_condition>
    (5)     GROUP BY <group_by_list>
    (6)     HAVING <having_condition>
    (9)     ORDER BY <order_by_condition>
    (10)    LIMIT <limit_number>
    
     

    五 测试sql语句的执行顺序

      1. 新建一个测试数据库TestDB;
    
    
    create database TestDB;
      2.创建测试表table1和table2;
      
    CREATE TABLE table1
     (
         customer_id VARCHAR(10) NOT NULL,
         city VARCHAR(10) NOT NULL,
         PRIMARY KEY(customer_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    
     CREATE TABLE table2
     (
         order_id INT NOT NULL auto_increment,
         customer_id VARCHAR(10),
         PRIMARY KEY(order_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    View Code

        3.插入测试数据;

     INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
     INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('tx');
     INSERT INTO table2(customer_id) VALUES(NULL);
    View Code
    
    

      注释:准备工作做完以后,table1和table2看起来应该像下面这样:

    
    
    mysql> select * from table1;
     +-------------+----------+
     | customer_id | city     |
     +-------------+----------+
     | 163         | hangzhou |
     | 9you        | shanghai |
     | baidu       | hangzhou |
     | tx          | hangzhou |
     +-------------+----------+
     4 rows in set (0.00 sec)
    
     mysql> select * from table2;
     +----------+-------------+
     | order_id | customer_id |
     +----------+-------------+
     |        1 | 163         |
     |        2 | 163         |
     |        3 | 9you        |
     |        4 | 9you        |
     |        5 | 9you        |
     |        6 | tx          |
     |        7 | NULL        |
     +----------+-------------+
     7 rows in set (0.00 sec)
    View Code
    
    
      4、准备SQL逻辑查询测试语句
    #查询来自杭州,并且订单数少于2的客户。
     SELECT a.customer_id, COUNT(b.order_id) as total_orders
     FROM table1 AS a
     LEFT JOIN table2 AS b
     ON a.customer_id = b.customer_id
     WHERE a.city = 'hangzhou'
     GROUP BY a.customer_id
     HAVING count(b.order_id) < 2
     ORDER BY total_orders DESC;
    View Code

    六 执行顺序分析

    
    

    在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。

    
    

      1、执行FROM语句

    
    

    第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

    关于什么是笛卡尔积,请自行Google补脑。经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 9you        | shanghai |        1 | 163         |
    | baidu       | hangzhou |        1 | 163         |
    | tx          | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        2 | 163         |
    | baidu       | hangzhou |        2 | 163         |
    | tx          | hangzhou |        2 | 163         |
    | 163         | hangzhou |        3 | 9you        |
    | 9you        | shanghai |        3 | 9you        |
    | baidu       | hangzhou |        3 | 9you        |
    | tx          | hangzhou |        3 | 9you        |
    | 163         | hangzhou |        4 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | baidu       | hangzhou |        4 | 9you        |
    | tx          | hangzhou |        4 | 9you        |
    | 163         | hangzhou |        5 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | baidu       | hangzhou |        5 | 9you        |
    | tx          | hangzhou |        5 | 9you        |
    | 163         | hangzhou |        6 | tx          |
    | 9you        | shanghai |        6 | tx          |
    | baidu       | hangzhou |        6 | tx          |
    | tx          | hangzhou |        6 | tx          |
    | 163         | hangzhou |        7 | NULL        |
    | 9you        | shanghai |        7 | NULL        |
    | baidu       | hangzhou |        7 | NULL        |
    | tx          | hangzhou |        7 | NULL        |
    +-------------+----------+----------+-------------+
    View Code

    总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

      2、执行ON过滤

    
    

    执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    View Code
    
    

    VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

    
    

      3、添加外部行

    
    

    这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOINFULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

    
    

    LEFT OUTER JOIN把左表记为保留表,得到的结果为:

     

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    View Code

    RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    View Code
    
    

    FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    View Code
    
    

    添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

    
    

    由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

    
    
    | baidu       | hangzhou |     NULL | NULL        |
    
    

    现在就把这条数据添加到VT2表中,得到的VT3表如下:

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    View Code
    
    

    接下来的操作都会在该VT3表上进行。

    
    

      4、执行WHERE过滤

    
    

    对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    
    复制代码
    View Code
    
    

    但是在使用WHERE子句时,需要注意以下两点:

    
    
    1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
    2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。
    
    

       5、执行GROUP BY分组

    
    

    GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容(默认只显示组内第一条):

    
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    
    

    得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

    
    

       6、执行HAVING过滤

    
    

    HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

     

    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    View Code

    这就是虚拟表VT6。

    
    

      7、SELECT列表

    
    

    现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

    
    

    我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | baidu       |            0 |
    | tx          |            1 |
    +-------------+--------------+
    View Code
    
    

    还没有完,这只是虚拟表VT7。

    
    

      8、执行DISTINCT子句

    
    

    如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

    
    

    由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

    
    

      9、执行ORDER BY子句

    
    

    对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | tx          |            1 |
    | baidu       |            0 |
    +-------------+--------------+
    View Code
    
    

    可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

    
    

      10、执行LIMIT子句

    
    

    LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

    
    

    MySQL数据库的LIMIT支持如下形式的选择:

    LIMIT n, m
    View Code
    
    

    表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(现在的大数据处理,大都使用缓存)

     八、sql语句的具体用法
       1、 简单查询
    company.employee
        员工id      id                  int             
        姓名        emp_name            varchar
        性别        sex                 enum
        年龄        age                 int
        入职日期     hire_date           date
        岗位        post                varchar
        职位描述     post_comment        varchar
        薪水        salary              double
        办公室       office              int
        部门编号     depart_id           int
    
    
    
    #创建表
    create table employee(
    id int not null unique auto_increment,
    name varchar(20) not null,
    sex enum('male','female') not null default 'male', #大部分是男的
    age int(3) unsigned not null default 28,
    hire_date date not null,
    post varchar(50),
    post_comment varchar(100),
    salary double(15,2),
    office int, #一个部门一个屋子
    depart_id int
    );
    
    
    #查看表结构
    mysql> desc employee;
    +--------------+-----------------------+------+-----+---------+----------------+
    | Field        | Type                  | Null | Key | Default | Extra          |
    +--------------+-----------------------+------+-----+---------+----------------+
    | id           | int(11)               | NO   | PRI | NULL    | auto_increment |
    | name         | varchar(20)           | NO   |     | NULL    |                |
    | sex          | enum('male','female') | NO   |     | male    |                |
    | age          | int(3) unsigned       | NO   |     | 28      |                |
    | hire_date    | date                  | NO   |     | NULL    |                |
    | post         | varchar(50)           | YES  |     | NULL    |                |
    | post_comment | varchar(100)          | YES  |     | NULL    |                |
    | salary       | double(15,2)          | YES  |     | NULL    |                |
    | office       | int(11)               | YES  |     | NULL    |                |
    | depart_id    | int(11)               | YES  |     | NULL    |                |
    +--------------+-----------------------+------+-----+---------+----------------+
    
    #插入记录
    #三个部门:教学,销售,运营
    insert into employee(name,sex,age,hire_date,post,salary,office,depart_id) values
    ('egon','male',18,'20170301','老男孩驻沙河办事处外交大使',7300.33,401,1), #以下是教学部
    ('alex','male',78,'20150302','teacher',1000000.31,401,1),
    ('wupeiqi','male',81,'20130305','teacher',8300,401,1),
    ('yuanhao','male',73,'20140701','teacher',3500,401,1),
    ('liwenzhou','male',28,'20121101','teacher',2100,401,1),
    ('jingliyang','female',18,'20110211','teacher',9000,401,1),
    ('jinxin','male',18,'19000301','teacher',30000,401,1),
    ('成龙','male',48,'20101111','teacher',10000,401,1),
    
    ('歪歪','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
    ('丫丫','female',38,'20101101','sale',2000.35,402,2),
    ('丁丁','female',18,'20110312','sale
    View Code
    ',1000.37,402,2),
    ('星星','female',18,'20160513','sale',3000.29,402,2),
    ('格格','female',28,'20170127','sale',4000.33,402,2),
    
    ('张野','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
    ('程咬金','male',18,'19970312','operation',20000,403,3),
    ('程咬银','female',18,'20130311','operation',19000,403,3),
    ('程咬铜','male',18,'20150411','operation',18000,403,3),
    ('程咬铁','female',18,'20140512','operation',17000,403,3)
    ;
    
    #ps:如果在windows系统中,插入中文字符,select的结果为空白,可以将所有字符编码统一设置成g
    
    
    #简单查询
        SELECT id,name,sex,age,hire_date,post,post_comment,salary,office,depart_id 
        FROM employee;
    
        SELECT * FROM employee;
    
        SELECT name,salary FROM employee;
    
    #避免重复DISTINCT
        SELECT DISTINCT post FROM employee;    
    
    #通过四则运算查询
        SELECT name, salary*12 FROM employee;
        SELECT name, salary*12 AS Annual_salary FROM employee;
        SELECT name, salary*12 Annual_salary FROM employee;
    
    #定义显示格式
       CONCAT() 函数用于连接字符串
       SELECT CONCAT('姓名: ',name,'  年薪: ', salary*12)  AS Annual_salary 
       FROM employee;
       
       CONCAT_WS() 第一个参数为分隔符
       SELECT CONCAT_WS(':',name,salary*12)  AS Annual_salary 
       FROM employee;
    View Code
    
    

      2、WHERE约束

      where字句中可以使用:

      1. 比较运算符:> < >= <= <> !=
      2. between 80 and 100 值在10到20之间
      3. in(80,90,100) 值是10或20或30
      4. like 'egon%'
            pattern可以是%或_,
        %表示任意多字符
        _表示一个字符
      5. 逻辑运算符:在多个条件直接可以使用逻辑运算符 and or not

    #1:单条件查询
        SELECT name FROM employee
            WHERE post='sale';
            
    #2:多条件查询
        SELECT name,salary FROM employee
            WHERE post='teacher' AND salary>10000;
    
    #3:关键字BETWEEN AND
        SELECT name,salary FROM employee 
            WHERE salary BETWEEN 10000 AND 20000;
    
        SELECT name,salary FROM employee 
            WHERE salary NOT BETWEEN 10000 AND 20000;
        
    #4:关键字IS NULL(判断某个字段是否为NULL不能用等号,需要用IS)
        SELECT name,post_comment FROM employee 
            WHERE post_comment IS NULL;
    
        SELECT name,post_comment FROM employee 
            WHERE post_comment IS NOT NULL;
            
        SELECT name,post_comment FROM employee 
            WHERE post_comment=''; 注意''是空字符串,不是null
        ps:
            执行
            update employee set post_comment='' where id=2;
            再用上条查看,就会有结果了
    
    #5:关键字IN集合查询
        SELECT name,salary FROM employee 
            WHERE salary=3000 OR salary=3500 OR salary=4000 OR salary=9000 ;
        
        SELECT name,salary FROM employee 
            WHERE salary IN (3000,3500,4000,9000) ;
    
        SELECT name,salary FROM employee 
            WHERE salary NOT IN (3000,3500,4000,9000) ;
    
    #6:关键字LIKE模糊查询
        通配符’%’
        SELECT * FROM employee 
                WHERE name LIKE 'eg%';
    
        通配符’_’
        SELECT * FROM employee 
                WHERE name LIKE 'al__';
    View Code

     

      3、 分组查询:GROUP BY

      1、 什么是分组?为什么要分组?   

    #1、首先明确一点:分组发生在where之后,即分组是基于where之后得到的记录而进行的
    
    #2、分组指的是:将所有记录按照某个相同字段进行归类,比如针对员工信息表的职位分组,或者按照性别进行分组等
    
    #3、为何要分组呢?
        取每个部门的最高工资
        取每个部门的员工数
        取男人数和女人数
    
    小窍门:‘每’这个字后面的字段,就是我们分组的依据
    
    
    #4、大前提:
        可以按照任意字段分组,但是分组完毕后,比如group by post,只能查看post字段,如果想查看组内信息,需要借助于聚合函数
    View Code

      2、ONLY_FULL_GROUP_BY

    #查看MySQL 5.7默认的sql_mode如下:
    mysql> select @@global.sql_mode;
    ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
    
    #!!!注意
    ONLY_FULL_GROUP_BY的语义就是确定select target list中的所有列的值都是明确语义,简单的说来,在ONLY_FULL_GROUP_BY模式下,target list中的值要么是来自于聚集函数的结果,要么是来自于group by list中的表达式的值。
    
    
    #设置sql_mole如下操作(我们可以去掉ONLY_FULL_GROUP_BY模式):
    mysql> set global sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
    
    复制代码
    View Code
    mysql> select @@global.sql_mode;
    +-------------------+
    | @@global.sql_mode |
    +-------------------+
    |                   |
    +-------------------+
    1 row in set (0.00 sec)
    
    mysql> select * from emp group by post; 
    +----+------+--------+-----+------------+----------------------------+--------------+------------+--------+-----------+
    | id | name | sex    | age | hire_date  | post                       | post_comment | salary     | office | depart_id |
    +----+------+--------+-----+------------+----------------------------+--------------+------------+--------+-----------+
    | 14 | 张野 | male   |  28 | 2016-03-11 | operation                  | NULL         |   10000.13 |    403 |         3 |
    |  9 | 歪歪 | female |  48 | 2015-03-11 | sale                       | NULL         |    3000.13 |    402 |         2 |
    |  2 | alex | male   |  78 | 2015-03-02 | teacher                    | NULL         | 1000000.31 |    401 |         1 |
    |  1 | egon | male   |  18 | 2017-03-01 | 老男孩驻沙河办事处外交大使 | NULL         |    7300.33 |    401 |         1 |
    +----+------+--------+-----+------------+----------------------------+--------------+------------+--------+-----------+
    4 rows in set (0.00 sec)
    
    
    #由于没有设置ONLY_FULL_GROUP_BY,于是也可以有结果,默认都是组内的第一条记录,但其实这是没有意义的
    
    mysql> set global sql_mode='ONLY_FULL_GROUP_BY';
    Query OK, 0 rows affected (0.00 sec)
    
    mysql> quit #设置成功后,一定要退出,然后重新登录方可生效
    Bye
    
    mysql> use db1;
    Database changed
    mysql> select * from emp group by post; #报错
    ERROR 1055 (42000): 'db1.emp.id' isn't in GROUP BY
    mysql> select post,count(id) from emp group by post; #只能查看分组依据和使用聚合函数
    +----------------------------+-----------+
    | post                       | count(id) |
    +----------------------------+-----------+
    | operation                  |         5 |
    | sale                       |         5 |
    | teacher                    |         7 |
    | 老男孩驻沙河办事处外交大使 |         1 |
    +----------------------------+-----------+
    4 rows in set (0.00 sec)
    
    复制代码
    View Code

       3、 GROUP BY 

    单独使用GROUP BY关键字分组
        SELECT post FROM employee GROUP BY post;
        注意:我们按照post字段分组,那么select查询的字段只能是post,想要获取组内的其他相关信息,需要借助函数
    
    GROUP BY关键字和GROUP_CONCAT()函数一起使用
        SELECT post,GROUP_CONCAT(name) FROM employee GROUP BY post;#按照岗位分组,并查看组内成员名
        SELECT post,GROUP_CONCAT(name) as emp_members FROM employee GROUP BY post;
    
    GROUP BY与聚合函数一起使用
        select post,count(id) as count from employee group by post;#按照岗位分组,并查看每个组有多少人
    
    强调:
    
    如果我们用unique的字段作为分组的依据,则每一条记录自成一组,这种分组没有意义
    多条记录之间的某个字段值相同,该字段通常用来作为分组的依据
    View Code

    四 聚合函数

    复制代码
    #强调:聚合函数聚合的是组的内容,若是没有分组,则默认一组
    
    示例:
        SELECT COUNT(*) FROM employee;
        SELECT COUNT(*) FROM employee WHERE depart_id=1;
        SELECT MAX(salary) FROM employee;
        SELECT MIN(salary) FROM employee;
        SELECT AVG(salary) FROM employee;
        SELECT SUM(salary) FROM employee;
        SELECT SUM(salary) FROM employee WHERE depart_id=3;
    复制代码

    六 HAVING过滤

    HAVING与WHERE不一样的地方在于!!!!!!

    #!!!执行优先级从高到低:where > group by > having 
    #1. Where 发生在分组group by之前,因而Where中可以有任意字段,但是绝对不能使用聚合函数。
    
    #2. Having发生在分组group by之后,因而Having中可以使用分组的字段,无法直接取到其他字段,可以使用聚合函数
    mysql> select @@sql_mode;
    +--------------------+
    | @@sql_mode         |
    +--------------------+
    | ONLY_FULL_GROUP_BY |
    +--------------------+
    1 row in set (0.00 sec)
    
    mysql> select * from emp where salary > 100000;
    +----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
    | id | name | sex  | age | hire_date  | post    | post_comment | salary     | office | depart_id |
    +----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
    |  2 | alex | male |  78 | 2015-03-02 | teacher | NULL         | 1000000.31 |    401 |         1 |
    +----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
    1 row in set (0.00 sec)
    
    mysql> select * from emp having salary > 100000;
    ERROR 1463 (42000): Non-grouping field 'salary' is used in HAVING clause
    
    mysql> select post,group_concat(name) from emp group by post having salary > 10000;#错误,分组后无法直接取到salary字段
    ERROR 1054 (42S22): Unknown column 'salary' in 'having clause'
    mysql> select post,group_concat(name) from emp group by post having avg(salary) > 10000;
    +-----------+-------------------------------------------------------+
    | post | group_concat(name) |
    +-----------+-------------------------------------------------------+
    | operation | 程咬铁,程咬铜,程咬银,程咬金,张野 |
    | teacher | 成龙,jinxin,jingliyang,liwenzhou,yuanhao,wupeiqi,alex |
    +-----------+-------------------------------------------------------+
    2 rows in set (0.00 sec)
    View Code

    七 查询排序:ORDER BY

    复制代码
    按单列排序
        SELECT * FROM employee ORDER BY salary;
        SELECT * FROM employee ORDER BY salary ASC;
        SELECT * FROM employee ORDER BY salary DESC;
    
    按多列排序:先按照age排序,如果年纪相同,则按照薪资排序
        SELECT * from employee
            ORDER BY age,
            salary DESC;
    复制代码

    八 限制查询的记录数:LIMIT

    复制代码
    示例:
        SELECT * FROM employee ORDER BY salary DESC 
            LIMIT 3;                    #默认初始位置为0 
        
        SELECT * FROM employee ORDER BY salary DESC
            LIMIT 0,5; #从第0开始,即先查询出第一条,然后包含这一条在内往后查5条
    
        SELECT * FROM employee ORDER BY salary DESC
            LIMIT 5,5; #从第5开始,即先查询出第6条,然后包含这一条在内往后查5条
    复制代码

     

    九 使用正则表达式查询

    复制代码
    SELECT * FROM employee WHERE name REGEXP '^ale';
    
    SELECT * FROM employee WHERE name REGEXP 'on$';
    
    SELECT * FROM employee WHERE name REGEXP 'm{2}';
    
    
    小结:对字符串匹配的方式
    WHERE name = 'egon';
    WHERE name LIKE 'yua%';
    WHERE name REGEXP 'on$';
    复制代码

     

     
  • 相关阅读:
    zTree根据json选中节点,并且设置其他节点不可选
    点击一次按钮,发生多次ajax请求
    sublimeText3 中配置sass环境,并将编译后文件保存到指定文件夹
    MD5加密
    c# Http请求之HttpClient
    xml与object 之间的ORM
    wpf和winform的那点区别
    c# http请求ajax页面
    c# https请求
    python爬虫框架Pyspider初次接触
  • 原文地址:https://www.cnblogs.com/xuanan/p/7820364.html
Copyright © 2011-2022 走看看