题目:
Result文件数据说明:
Ip:106.39.41.166,(城市)
Date:10/Nov/2016:00:01:02 +0800,(日期)
Day:10,(天数)
Traffic: 54 ,(流量)
Type: video,(类型:视频video或文章article)
Id: 8701(视频或者文章的id)
测试要求:
1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。
两阶段数据清洗:
(1)第一阶段:把需要的信息从原始日志中提取出来
ip: 199.30.25.88
time: 10/Nov/2016:00:01:03 +0800
traffic: 62
文章: article/11325
视频: video/3235
1 2 4 5 6
(2)第二阶段:根据提取出来的信息做精细化操作
ip--->城市 city(IP)
date--> time:2016-11-10 00:01:03
day: 10
traffic:62
type:article/video
id:11325
(3)hive数据库表结构:
create table data( ip string, time string , day string, traffic bigint,
type string, id string )
2、数据处理:
·统计最受欢迎的视频/文章的Top10访问次数 (video/article)
·按照地市统计最受欢迎的Top10课程 (ip)
·按照流量统计最受欢迎的Top10课程 (traffic)
3、数据可视化:将统计结果倒入MySql数据库中,通过图形化展示的方式展现出来。
完成情况:
目前完成了第一步
数据清洗代码:
package keshang11t13; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Locale; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class qingxi1{ public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job = Job.getInstance(); job.setJobName("WordCount1"); job.setJarByClass(qingxi1.class); job.setMapperClass(doMapper.class); job.setReducerClass(doReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); Path in = new Path("hdfs://localhost:9000/user/hadoop/input/result"); Path out = new Path("hdfs://localhost:9000/user/hadoop/output2"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class doMapper extends Mapper<Object, Text, Text, NullWritable>{ public static Text word = new Text(); public static final SimpleDateFormat FORMAT = new SimpleDateFormat("d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); //原时间格式 public static final SimpleDateFormat dateformat1 = new SimpleDateFormat("yyyy-MM-dd-HH:mm:ss");//现时间格式 private static Date parseDateFormat(String string) { //转换时间格式 Date parse = null; try { parse = FORMAT.parse(string); } catch (Exception e) { e.printStackTrace(); } return parse; } private static String parseTime(String line) { //时间 final int first = line.indexOf(""); final int last = line.indexOf(" +0800"); String time = line.substring(first + 1, last).trim(); Date date = parseDateFormat(time); return dateformat1.format(date); } protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String arr[] = line.split(","); System.out.println(arr[1]); arr[1] = parseTime(arr[1]); //时间 System.out.println(arr[1]); word.set(arr[0]+" "+arr[1]+" "+arr[2]+" "+arr[3]+" "+arr[4]+" "+arr[5]); context.write(word, NullWritable.get()); } } public static class doReducer extends Reducer<Text, NullWritable, Text, NullWritable>{ @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } } }
在hive中建表并导入数据: