zoukankan      html  css  js  c++  java
  • sgu 125 Shtirlits dfs 难度:0

    125. Shtirlits

    time limit per test: 0.25 sec. 
    memory limit per test: 4096 KB

     

     

    There is a checkered field of size N x N cells (1 Ј N Ј 3). Each cell designates the territory of a state (i.e. N2 states). Each state has an army. Let A [i, j] be the number of soldiers in the state which is located on i-th line and on j-th column of the checkered field (1£i£N, 1£j£N, 0 £  A[i, j] £  9). For each state the number of neighbors, B [i, j], that have a larger army, is known. The states are neighbors if they have a common border (i.e. £  B[i, j]  £  4). Shtirlits knows matrix B. He has to determine the number of armies for all states (i.e. to find matrix A) using this information for placing forces before the war. If there are more than one solution you may output any of them.

     

    Input

    The first line contains a natural number N. Following N lines contain the description of matrix B - N numbers in each line delimited by spaces.

     

    Output

    If a solution exists, the output file should contain N lines, which describe matrix A. Each line will contain N numbers delimited by spaces. If there is no solution, the file should contain NO SOLUTION.

     

    Sample Input

    3
    1 2 1
    1 2 1
    1 1 0
    

     

    Sample Output

    1 2 3
    1 4 5
    1 6 7
    
     
    #include<cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int B[3][3],n,A[3][3];
    bool vis[3][3],orgvis[3][3][3][3];
    const int dx[5]={1,-1,0,0,0},dy[5]={0,0,1,-1,0};
    bool in(int x,int y){
        return x>=0&&x<n&&y>=0&&y<n;
    }
    void cpy(bool a[3][3],bool b[3][3]){
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++)a[i][j]=b[i][j];
        }
    }
    bool check(int x,int y){
            int len=0;
            int lit=0;
            for(int k=0;k<4;k++){
                int tx=x+dx[k],ty=y+dy[k];
                if(in(tx,ty)){
                    if(vis[tx][ty]&&A[tx][ty]>A[x][y])len++;
                    if(!vis[tx][ty])lit++;
                }
            }
            if(len>B[x][y]||lit+len<B[x][y]){return false;}
            if(lit!=0)return true;
            return len==B[x][y];
    }
    bool dfs(int x,int y){
        vis[x][y]=true;
        for(int i=n*n;i>=0;i--){
            bool fl=false;
            A[x][y]=i;
            for(int k=0;k<5;k++){
                int tx=x+dx[k],ty=y+dy[k];
                if(in(tx,ty)&&vis[tx][ty]&&!check(tx,ty)){fl=true;break;}
            }
            if(fl)continue;
            cpy(orgvis[x][y],vis);
            for(int j=0;j<4;j++){
                int tx=x+dx[j],ty=y+dy[j];
                if(in(tx,ty)){
                    if(!vis[tx][ty]){
                        if(!dfs(tx,ty)){fl=true;break;}
                    }
                }
            }
            if(!fl)return true;
            cpy(vis,orgvis[x][y]);
        }
        vis[x][y]=false;
        return false;
    }
    int main(){
        scanf("%d",&n);
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                scanf("%d",B[i]+j);
            }
        }
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(B[i][j]==0){dfs(i,j);break;}
            }
        }
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(!vis[i][j]||!check(i,j)){
                    puts("NO SOLUTION");
                    return 0;
                }
            }
        }
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                    printf("%d%c",A[i][j],j==n-1?'\n':' ');
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    文件操作小练习
    阶段练习1
    copy小练习
    小练习
    str 小列题
    条款50:使用自定义的new以及delete的时机会
    条款49:了解new-handle行为
    简单的说一下:tarits技法就是一种模板元编程,起可以将本来处于运行期的事拉到编译期来做,增加了运行效率。 看以非模板元编程的例子,就是前面的那个例子:
    条款47:请使用traits class表示类型信息
    条款46:需要类型转换的时候请为模板定义非成员函数
  • 原文地址:https://www.cnblogs.com/xuesu/p/4010852.html
Copyright © 2011-2022 走看看