这是我的letex学习笔记,由于时间有限,只能讲源码和结果贴出:
这里面是广义线性模型的推导过程:
documentclass{article} usepackage{paralist} egin{document} itle{Generate Linear Model Estimation Note} author{Xue Zoushi } date{April 28, 2016} maketitle The general procedures: egin{compactenum} item General exponential family format egin{equation} f(y| heta) = exp left ( frac{y heta + b( heta)}{a(phi)} + c(y,phi) ight) end{equation} [ ell( heta|y) =log[f(y| heta)]= frac{y heta + b( heta)}{a(phi)} + c(y,phi) ] item Some important attributes of log-likelihood [ E(Y) = mu = frac{partial b( heta)} {partial heta} ] [ E[S( heta)]= 0 ] [ E[frac{partial S}{partial heta}] = -E[S( heta)]^2 ] [ I( heta)= Var(S( heta))= E[S( heta)]^2 - {E[S( heta)]}^2 ] [ Var(Y) = a(phi)[frac{partial^2 b( heta)}{partial heta ^ 2}] ] item Newton-Raphson and Fisher-scoring The scalar form of Taylor series [ ell( heta) equiv ell( ilde{ heta}) + ( heta - ilde{ heta}) left. frac{partial ell ( heta)}{partial heta} ight |_{ heta = ilde{ heta}} + frac{1}{2} ( heta - ilde{ heta})^2 left. frac{partial ell^2 ( heta)}{partial heta^2} ight |_{ heta = ilde{ heta}}] Set ( partial ell ( heta) / partial heta = 0 ) and rearranging terms yields: [ heta equiv ilde{ heta} - left [ left . frac{partial ^2 ell ( heta)}{partial heta ^2} ight |_{ heta= ilde{ heta}} ight ]^{-1} left [ left . frac{partial ell ( heta)}{partial heta} ight |_{ heta= ilde{ heta}} ight ] ] The basic matrix form of Newton-Raphson algorithm: egin{equation} heta equiv ilde{ heta} - [H( ilde{ heta})]^{-1} S( ilde{ heta}) end{equation} Replace hession matrix with the information matrix (i.e. ( E(H( heta))= -Var[S( heta)]= -I( heta) )), we get Fisher scoring algorithm: egin{equation} heta equiv ilde{ heta} - [I( ilde{ heta})]^{-1} S( ilde{ heta}) end{equation} item Estimate the coefficient ( eta ). Scalar form egin{equation} frac{partial ell (eta)}{partial eta} = frac{partial ell ( heta) }{ partial heta} frac{partial heta }{ partial mu } frac{partial mu }{ partial eta } frac{partial eta }{ partial eta } end{equation} Some results: egin{itemize} item [ frac{partial ell ( heta)}{partial heta} = frac{y-mu}{a(phi)} ] item [frac{partial heta}{partialmu}=left(frac{partialmu}{partial heta} ight)^{-1}=frac{1}{V(mu)}] item [ frac{partial eta}{partial eta} = frac{partial X eta}{eta}] item [ frac{partial ell(eta)}{partial eta} = (y-mu)left( frac{1}{V(y)} ight)left(frac{partial mu}{partial eta} ight) X ] end{itemize} Matrix form egin{equation} frac{partialell( heta)}{partial eta} = X^{'} D^{-1} V^{-1}(y-mu) end{equation} where $y$ is the $n imes1$ vector of observations, $ell( heta)$ is the $n imes 1$ vector of log-likelihood values associated with observations, $V = diag[Var(y_{i})]$ is the $n imes n$ variance matrix of the observations, $D=diag[partial eta_{i} / partial mu_{i}]$ is the $n imes n$ matrix of derivatives, and $mu$ is the $n imes 1$ mean vector.\ Let $W=(DVD)^{-1}$, we can get: [ S(eta) = frac{partial ell ( heta)}{partial eta} = X^{'} D^{-1}V^{-1}(D^{-1}D)(y-mu) = X^{'}WD(y-mu) ] [ Var[S(eta)] =X^{'}WD[Var(y-mu)]DWX =X^{'}WDVDWX=X^{'}WX ] item Pseudo-Likelihood for GLM \ Using Fisher scoring equation yields $eta = ilde{eta} +(X^{'} ilde{W}X)^{-1}X^{'} ilde{W} ilde{D}(y- ilde{mu})$, where $ ilde{W}, ilde{D}$, and $mu$ evaluated at $ ilde{eta}$. So GLM estimating equations: egin{equation} X^{'} ilde{W}Xeta = X^{'} ilde{W}y^{*} end{equation} where $y^{*} = X ilde{eta} + ilde{D}(y- ilde{mu}) = ilde{eta} + ilde{D}(y- ilde{mu})$, and $y^{*}$ is called the pseudo-variable. [ E(y^{*}) =E[X ilde{eta} + ilde{D}(y - ilde{mu})] = Xeta ] [ Var(y^{*}) = E[X ilde{eta} + ilde{D}(y - ilde{mu})] = ilde{D} ilde{V} ilde{D}= ilde{W}^{-1} ] egin{equation} X^{'}[Var(y^{*})]^{-1}Xeta = X^{'}[Var(y^{*})]^{-1} Rightarrow X^{'}WXeta = X^{'}Wy^{*} end{equation} end{compactenum} end{document}
使用emacs编辑,然后使用命令 pdfletex -glm_estimation.tex生成,生成文件在博客园的文件附件中。
下面是生成的pdf文件截图: