zoukankan      html  css  js  c++  java
  • QuantLib 金融计算——自己动手封装 Python 接口(3)

    QuantLib 金融计算——自己动手封装 Python 接口(3)

    概述

    承接《自己动手封装 Python 接口(2)》中留下的问题,即封装 QuantLibEx 中的几个期限结构模型。

    如何封装源代码?

    与前一篇文章中的情况不同,要封装的程序不是已经编译好的库文件,而是 C++ 源代码。

    SWIG 可以从源代码的层面封装 C++ 接口,一方面要提供头文件,告知 SWIG 类、函数等的声明;另一方面要提供源文件,让 SWIG 知道方法的实现,SWIG 会自动对源文件进行编译,并最终链接到生成的 Python 接口中。

    实践

    幸运的是 QuantLibEx 中几个 NS 型期限结构模型的构造函数没有引入新的类型,所以“最小功能集合”没有变。

    要封装这几个模型,只需对 fittedbondcurve.isetup.py 稍加修改。在 fittedbondcurve.i 中编写接口代码,在 setup.py 添加头文件路径和几个源文件就可以了。

    六个 NS 型期限结构模型的参数估计

    《收益率曲线之构建曲线(5)》中的 C++ 代码翻译成 Python,验证封装后的接口是否可用。

    import QuantLibEx as qlx
    
    print(qlx.__version__)
    
    bondNum = 16
    
    cleanPrice = [100.4941, 103.5572, 104.4135, 105.0056, 99.8335, 101.25, 102.3832, 97.0053,
                  99.5164, 101.2435, 104.0539, 101.15, 96.1395, 91.1123, 122.0027, 92.4369]
    priceHandle = [qlx.QuoteHandle(qlx.SimpleQuote(p)) for p in cleanPrice]
    issueYear = [1999, 1999, 2001, 2002, 2003, 1999, 2004, 2005,
                 2006, 2007, 2003, 2008, 2005, 2006, 1997, 2007]
    issueMonth = [qlx.February, qlx.October, qlx.January, qlx.January, qlx.May, qlx.January, qlx.January, qlx.April,
                  qlx.April, qlx.September, qlx.January, qlx.January, qlx.January, qlx.January, qlx.July, qlx.January]
    issueDay = [22, 22, 4, 9, 20, 15, 15, 26, 21, 17, 15, 8, 14, 11, 10, 12]
    
    maturityYear = [2009, 2010, 2011, 2012, 2013, 2014, 2014, 2015,
                    2016, 2017, 2018, 2019, 2020, 2021, 2027, 2037]
    
    maturityMonth = [qlx.July, qlx.January, qlx.January, qlx.July, qlx.October, qlx.January, qlx.July, qlx.July,
                     qlx.September, qlx.September, qlx.January, qlx.March, qlx.July, qlx.September, qlx.July, qlx.March]
    
    maturityDay = [15, 15, 4, 15, 20, 15, 15, 15,
                   15, 15, 15, 15, 15, 15, 15, 15]
    
    issueDate = []
    maturityDate = []
    for i in range(bondNum):
        issueDate.append(
            qlx.Date(issueDay[i], issueMonth[i], issueYear[i]))
        maturityDate.append(
            qlx.Date(maturityDay[i], maturityMonth[i], maturityYear[i]))
    
    couponRate = [
        0.04, 0.055, 0.0525, 0.05, 0.038, 0.04125, 0.043, 0.035,
        0.04, 0.043, 0.0465, 0.0435, 0.039, 0.035, 0.0625, 0.0415]
    
    # 配置 helper
    
    frequency = qlx.Annual
    dayCounter = qlx.Actual365Fixed(qlx.Actual365Fixed.Standard)
    paymentConv = qlx.Unadjusted
    terminationDateConv = qlx.Unadjusted
    convention = qlx.Unadjusted
    redemption = 100.0
    faceAmount = 100.0
    calendar = qlx.Australia()
    
    today = calendar.adjust(qlx.Date(30, qlx.January, 2008))
    qlx.Settings.instance().evaluationDate = today
    
    bondSettlementDays = 0
    bondSettlementDate = calendar.advance(
        today,
        qlx.Period(bondSettlementDays, qlx.Days))
    
    instruments = []
    maturity = []
    
    for i in range(bondNum):
        bondCoupon = [couponRate[i]]
    
        schedule = qlx.Schedule(
            issueDate[i],
            maturityDate[i],
            qlx.Period(frequency),
            calendar,
            convention,
            terminationDateConv,
            qlx.DateGeneration.Backward,
            False)
    
        helper = qlx.FixedRateBondHelper(
            priceHandle[i],
            bondSettlementDays,
            faceAmount,
            schedule,
            bondCoupon,
            dayCounter,
            paymentConv,
            redemption)
    
        maturity.append(dayCounter.yearFraction(
            bondSettlementDate, helper.maturityDate()))
    
        instruments.append(helper)
    
    accuracy = 1.0e-6
    maxEvaluations = 5000
    weights = qlx.Array()
    
    # 正则化条件
    
    l2Ns = qlx.Array(4, 0.5)
    guessNs = qlx.Array(4)
    guessNs[0] = 4 / 100.0
    guessNs[1] = 0.0
    guessNs[2] = 0.0
    guessNs[3] = 0.5
    
    l2Sv = qlx.Array(6, 0.5)
    guessSv = qlx.Array(6)
    guessSv[0] = 4 / 100.0
    guessSv[1] = 0.0
    guessSv[2] = 0.0
    guessSv[3] = 0.0
    guessSv[4] = 0.2
    guessSv[5] = 0.15
    
    l2Asv = qlx.Array(6, 0.5)
    guessAsv = qlx.Array(6)
    guessAsv[0] = 4 / 100.0
    guessAsv[1] = 0.0
    guessAsv[2] = 0.0
    guessAsv[3] = 0.0
    guessAsv[4] = 0.2
    guessAsv[5] = 0.3
    
    l2Bc = qlx.Array(5, 0.5)
    guessBc = qlx.Array(5)
    guessBc[0] = 4 / 100.0
    guessBc[1] = 0.0
    guessBc[2] = 0.0
    guessBc[3] = 0.0
    guessBc[4] = 0.2
    
    l2Bl = qlx.Array(5, 0.5)
    guessBl = qlx.Array(5)
    guessBl[0] = 4 / 100.0
    guessBl[1] = 0.0
    guessBl[2] = 0.0
    guessBl[3] = 0.5
    guessBl[4] = 0.5
    
    optMethod = qlx.LevenbergMarquardt()
    
    # 拟合方法
    
    nsf = qlx.NelsonSiegelFitting(
        weights, optMethod, l2Ns)
    svf = qlx.SvenssonFitting(
        weights, optMethod, l2Sv)
    asvf = qlx.AdjustedSvenssonFitting(
        weights, optMethod, l2Asv)
    dlf = qlx.DieboldLiFitting(
        0.5, weights, optMethod)
    bcf = qlx.BjorkChristensenFitting(
        weights, optMethod, l2Bc)
    blf = qlx.BlissFitting(
        weights, optMethod, l2Bl)
    
    tsNelsonSiegel = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        nsf,
        accuracy,
        maxEvaluations,
        guessNs,
        1.0)
    
    tsSvensson = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        svf,
        accuracy,
        maxEvaluations,
        guessSv)
    
    tsAdjustedSvensson = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        asvf,
        accuracy,
        maxEvaluations,
        guessAsv)
    
    tsDieboldLi = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        dlf,
        accuracy,
        maxEvaluations)
    
    tsBjorkChristensen = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        bcf,
        accuracy,
        maxEvaluations,
        guessBc)
    
    tsBliss = qlx.FittedBondDiscountCurve(
        bondSettlementDate,
        instruments,
        dayCounter,
        blf,
        accuracy,
        maxEvaluations,
        guessBl)
    
    print("NelsonSiegel Results: 		", tsNelsonSiegel.fitResults().solution())
    print("Svensson Results: 			", tsSvensson.fitResults().solution())
    print("AdjustedSvensson Results: 	", tsAdjustedSvensson.fitResults().solution())
    print("DieboldLi Results: 			", tsDieboldLi.fitResults().solution())
    print("BjorkChristensen Results: 	", tsBjorkChristensen.fitResults().solution())
    print("Bliss Results: 				", tsBliss.fitResults().solution())
    
    NelsonSiegel Results:       [ 0.0500803; -0.0105414; -0.0303842; 0.456529 ]
    Svensson Results:           [ 0.0431095; -0.00716036; -0.0340932; 0.0391339; 0.228995; 0.117208 ]
    AdjustedSvensson Results:   [ 0.0506269; -0.0116339; 0.0029305; -0.0135686; 0.179066; 0.267767 ]
    DieboldLi Results:          [ 0.0496643; -0.00879931; -0.0329267 ]
    BjorkChristensen Results:   [ 0.0508039; -0.0555185; 0.0115282; 0.0415581; 0.227838 ]
    Bliss Results:              [ 0.0500892; -0.0106013; -0.0315605; 0.513831; 0.456329 ]
    

    所得结果和《收益率曲线之构建曲线(5)》中的完全一致。

  • 相关阅读:
    IE 兼容问题笔记
    php编码与解码
    php 一些神奇加有趣的函数
    RESTful 规范
    关于CSS3背景渐变色无效问题
    ECShop
    php中的PHP_EOL换行符
    用 openSSL 生成 公钥 私钥
    app调用支付宝支付 笔记
    utf8 文件 错误保存为gbk 中文乱码 解决方法
  • 原文地址:https://www.cnblogs.com/xuruilong100/p/12491372.html
Copyright © 2011-2022 走看看