zoukankan      html  css  js  c++  java
  • USACO 1.5 Number Triangles

    Number Triangles

    Consider the number triangle shown below. Write a program that calculates the highest sum of numbers that can be passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

              7
    
            3   8
    
          8   1   0
    
        2   7   4   4
    
      4   5   2   6   5
    

    In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.

    PROGRAM NAME: numtri

    INPUT FORMAT

    The first line contains R (1 <= R <= 1000), the number of rows. Each subsequent line contains the integers for that particular row of the triangle. All the supplied integers are non-negative and no larger than 100.

    SAMPLE INPUT (file numtri.in)

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5
    

    OUTPUT FORMAT

    A single line containing the largest sum using the traversal specified.

    SAMPLE OUTPUT (file numtri.out)

    30

    题目大意:数字三角形,动态规划(DP)入门题目,说的是有一个一群数字排列成三角形,你现在站在上顶点,现在想要走到底边,每次你可以选择走左下或是右下,每次踩到的数字都累加起来,求最大累加和。
    思路:这题搜索不好搞,复杂度2^1000简直开玩笑,仔细思索,发现如果我知道脚下的两个点哪个更优,我就有唯一的行走策略了,那就从下往上推,f[i][j]表示从这点出发到达底边的最大累加和,他可以更新它左上的和右上的,从下往上推一遍答案就出来了,就是f[1][1];代码见下面
     1 /*
     2 ID:fffgrdcc1
     3 PROB:numtri
     4 LANG:C++
     5 */
     6 #include<cstdio>
     7 #include<iostream>
     8 #include<cstring>
     9 using namespace std;
    10 int a[1002][1002],f[1002][1002];
    11 int main()
    12 {
    13     freopen("numtri.in","r",stdin);
    14     freopen("numtri.out","w",stdout);
    15     memset(f,0,sizeof(f));
    16     memset(a,0,sizeof(a));
    17     int n;
    18     scanf("%d",&n);
    19     for(int i=1;i<=n;i++)
    20     {
    21         for(int j=1;j<=i;j++)
    22         {
    23             scanf("%d",&a[i][j]);
    24         }
    25     }
    26     for(int i=n+1;i>1;i--)
    27     {
    28         for(int j=1;j<=i;j++)
    29         {
    30             f[i-1][j]=max(f[i-1][j],f[i][j]+a[i-1][j]);
    31             f[i-1][j-1]=max(f[i-1][j-1],f[i][j]+a[i-1][j-1]);
    32         }
    33     }
    34     printf("%d
    ",f[1][1]);
    35     return 0;
    36 }

    (这题原来写过,所以写的略快,边界的处理比较粗糙,不过因为我提前把边界外一层留了出来且都设为0,所以不会影响答案)

  • 相关阅读:
    [转]读懂概率图模型:从基本概念和参数估计开始
    [转]ResNet讲解
    [转] GPT-2通俗详解
    Linux/IO基础
    Https:深入浅出HTTPS的交互过程
    Poll/Select/Epoll
    IO相关知识
    认真分析mmap:是什么 为什么 怎么用【转】
    页面滚动时导航渐变
    SSH Secure Shell Client的傻瓜式使用方法
  • 原文地址:https://www.cnblogs.com/xuwangzihao/p/5001175.html
Copyright © 2011-2022 走看看