zoukankan      html  css  js  c++  java
  • Redis 常见面试热点题

    Redis 常见面试热点题

    1、什么是Redis?

    Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库。

    2、Redis 与其他 key - value 缓存产品有那些特点?

    主要有以下三个特点:

    ①Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。

    ② Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储。

    ③Redis支持数据的备份,即master-slave模式的数据备份。

    3、Redis 优势

    性能极高 – Redis能读的速度是110000次/s,写的速度是81000次/s 。 丰富的数据类型 – Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。 原子 – Redis的所有操作都是原子性的,意思就是要么成功执行要么失败完全不执行。单个操作是原子性的。多个操作也支持事务,即原子性,通过MULTI和EXEC指令包起来。 丰富的特性 – Redis还支持 publish/subscribe, 通知, key 过期等等特性。

    4、Redis与其他key-value存储有什么不同?

    Redis有着更为复杂的数据结构并且提供对他们的原子性操作,这是一个不同于其他数据库的进化路径。Redis的数据类型都是基于基本数据结构的同时对程序员透明,无需进行额外的抽象。

    Redis运行在内存中但是可以持久化到磁盘,所以在对不同数据集进行高速读写时需要权衡内存,因为数据量不能大于硬件内存。在内存数据库方面的另一个优点是,相比在磁盘上相同的复杂的数据结构,在内存中操作起来非常简单,这样Redis可以做很多内部复杂性很强的事情。同时,在磁盘格式方面他们是紧凑的以追加的方式产生的,因为他们并不需要进行随机访问。

    5、Redis的数据类型?

    答:Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zsetsorted set:有序集合)。我们实际项目中比较常用的是string,hash,如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog、Geo、Pub/Sub。 如果你说还玩过Redis Module,像BloomFilter,RedisSearch,Redis-ML,面试官得眼睛就开始发亮了。

    6、使用Redis有哪些好处?

    1、速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O1)

    2、支持丰富数据类型,支持string,list,set,Zset,hash等

    3、支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

    4、丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

    4、Redis相比Memcached有哪些优势?

    1、Memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类

    2、Redis的速度比Memcached快很多

    3、Redis可以持久化其数据

    8、Memcache与Redis的区别都有哪些?

    1、存储方式: Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,这样能保证数据的持久性。

    2、数据支持类型: Memcache对数据类型支持相对简单。 Redis有复杂的数据类型。

    3、使用底层模型不同: 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

    6、Redis是单进程单线程的?

    答:Redis是单进程单线程的,redis利用队列技术将并发访问变为串行访问,消除了传统数据库串行控制的开销。

    10、一个字符串类型的值能存储最大容量是多少?

    答:512M

    11、Redis的持久化机制是什么?各自的优缺点?

    Redis提供两种持久化机制RDB和AOF机制:

    1、RDBRedis DataBase)持久化方式: 是指用数据集快照的方式半持久化模式)记录redis数据库的所有键值对,在某个时间点将数据写入一个临时文件,持久化结束后,用这个临时文件替换上次持久化的文件,达到数据恢复。

    优点:

    ①、只有一个文件dump.rdb,方便持久化。

    ②、容灾性好,一个文件可以保存到安全的磁盘。

    ③、性能最大化,fork子进程来完成写操作,让主进程继续处理命令,所以是IO最大化。使用单独子进程来进行持久化,主进程不会进行任何IO操作,保证了redis的高性能) 4.相对于数据集大时,比AOF的启动效率更高。

    缺点:

    ①、数据安全性低。RDB是间隔一段时间进行持久化,如果持久化之间redis发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候)

    2、AOFAppend-only file)持久化方式: 是指所有的命令行记录以redis命令请求协议的格式完全持久化存储)保存为aof文件。

    优点:

    ①、数据安全,aof持久化可以配置appendfsync属性,有always,每进行一次命令操作就记录到aof文件中一次。

    ②、通过append模式写文件,即使中途服务器宕机,可以通过redis-check-aof工具解决数据一致性问题。

    ③、AOF机制的rewrite模式。AOF文件没被rewrite之前(文件过大时会对命令进行合并重写),可以删除其中的某些命令(比如误操作的flushall))

    缺点:

    ①、AOF文件比RDB文件大,且恢复速度慢。 2、数据集大的时候,比rdb启动效率低。

    9、Redis常见性能问题和解决方案:

    1、Master最好不要写内存快照,如果Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务 2、如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一 3、为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网 4、尽量避免在压力很大的主库上增加从 5、主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

    13、redis过期键的删除策略?

    1、定时删除:在设置键的过期时间的同时,创建一个定时器timer). 让定时器在键的过期时间来临时,立即执行对键的删除操作。

    2、惰性删除:放任键过期不管,但是每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键。

    3、定期删除:每隔一段时间程序就对数据库进行一次检查,删除里面的过期键。至于要删除多少过期键,以及要检查多少个数据库,则由算法决定。

    14、Redis的回收策略(淘汰策略)?

    volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

    volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

    volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

    allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

    allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

    no-enviction(驱逐):禁止驱逐数据

    注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。

    使用策略规则:

    1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru

    2、如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random

    15、为什么Redis需要把所有数据放到内存中?

    答:Redis为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以redis具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘I/O速度为严重影响redis的性能。在内存越来越便宜的今天,redis将会越来越受欢迎。如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。

    16、Redis的同步机制了解么?

    答:Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。

    17、Pipeline有什么好处,为什么要用pipeline?

    答:可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redis的QPS峰值的一个重要因素是pipeline批次指令的数目。

    18、是否使用过Redis集群,集群的原理是什么?

    1)、Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。

    2)、Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。

    19、Redis集群方案什么情况下会导致整个集群不可用?

    答:有A,B,C三个节点的集群,在没有复制模型的情况下,如果节点B失败了,那么整个集群就会以为缺少5501-11000这个范围的槽而不可用。

    20、Redis支持的Java客户端都有哪些?官方推荐用哪个?

    答:Redisson、Jedis、lettuce等等,官方推荐使用Redisson。

    21、Jedis与Redisson对比有什么优缺点?

    答:Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。

    22、Redis如何设置密码及验证密码?

    设置密码:config set requirepass 123456

    授权密码:auth 123456

    23、说说Redis哈希槽的概念?

    答:Redis集群没有使用一致性hash,而是引入了哈希槽的概念,Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。

    24、Redis集群的主从复制模型是怎样的?

    答:为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型,每个节点都会有N-1个复制品.

    25、Redis集群会有写操作丢失吗?为什么?

    答:Redis并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。

    26、Redis集群之间是如何复制的?

    答:异步复制

    27、Redis集群最大节点个数是多少?

    答:16384个。

    28、Redis集群如何选择数据库?

    答:Redis集群目前无法做数据库选择,默认在0数据库。

    29、怎么测试Redis的连通性?

    答:使用ping命令。

    30、怎么理解Redis事务?

    1)事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。

    2)事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。

    31、Redis事务相关的命令有哪几个?

    答:MULTI、EXEC、DISCARD、WATCH

    29、Redis key的过期时间和永久有效分别怎么设置?

    答:EXPIRE和PERSIST命令。

    33、Redis如何做内存优化?

    答:尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面.

    34、Redis回收进程如何工作的?

    答:一个客户端运行了新的命令,添加了新的数据。Redi检查内存使用情况,如果大于maxmemory的限制, 则根据设定好的策略进行回收。一个新的命令被执行,等等。所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断地回收回到边界以下。如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限制就会被这个内存使用量超越。

    35、都有哪些办法可以降低Redis的内存使用情况呢?

    答:如果你使用的是32位的Redis实例,可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。

    36、Redis的内存用完了会发生什么?

    答:如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将Redis当缓存来使用配置淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。

    37、一个Redis实例最多能存放多少的keys?List、Set、Sorted Set他们最多能存放多少元素?

    答:理论上Redis可以处理多达232的keys,并且在实际中进行了测试,每个实例至少存放了2亿5千万的keys。我们正在测试一些较大的值。任何list、set、和sorted set都可以放232个元素。换句话说,Redis的存储极限是系统中的可用内存值。

    38、MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据?

    答:Redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。

    相关知识:Redis提供6种数据淘汰策略:

    volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

    volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

    volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

    allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

    allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

    no-enviction(驱逐):禁止驱逐数据

    39、Redis最适合的场景?

    1、会话缓存(Session Cache)

    最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗? 幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。

    2、全页缓存(FPC)

    除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。 再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。 此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

    3、队列

    Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。 如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。

    4,排行榜/计数器

    Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“userscores”,我们只需要像下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行: ZRANGE userscores 0 10 WITHSCORES Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。

    5、发布/订阅

    最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!

    40、假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来?

    答:使用keys指令可以扫出指定模式的key列表。

    对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?

    这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。

    41、如果有大量的key需要设置同一时间过期,一般需要注意什么?

    答:如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。

    42、使用过Redis做异步队列么,你是怎么用的?

    答:一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

    如果对方追问可不可以不用sleep呢?

    list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。

    如果对方追问pub/sub有什么缺点?

    在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如RabbitMQ等。

    43、redis如何实现延时队列?

    使用sortedset,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。

    44、使用过Redis分布式锁么,它是什么回事?

    先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。

    这时候对方会告诉你说你回答得不错,然后接着问如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?

    这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!对方这时会显露笑容,心里开始默念:摁,这小子还不错。

    本文围绕以下几个Redis热点问题进行详细阐述

    1、为什么使用redis

    2、使用redis有什么缺点

    3、单线程的redis为什么这么快

    4、redis的数据类型,以及每种数据类型的使用场景

    5、redis的过期策略以及内存淘汰机制

    6、redis和数据库双写一致性问题

    7、如何应对缓存穿透和缓存雪崩问题

    8、如何解决redis的并发竞争问题

    正文

    1、为什么使用redis

    分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。因此,这个问题主要从性能和并发两个角度去答。
    回答:如下所示,分为两点
    (一)性能
    如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应

    题外话****:忽然想聊一下这个迅速响应的标准。其实根据交互效果的不同,这个响应时间没有固定标准。不过曾经有人这么告诉我:"在理想状态下,我们的页面跳转需要在瞬间解决,对于页内操作则需要在刹那间解决。另外,超过一弹指的耗时操作要有进度提示,并且可以随时中止或取消,这样才能给用户最好的体验。"
    那么瞬间、刹那、一弹指具体是多少时间呢?
    根据《摩诃僧祗律》记载

    一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜有三十须臾。
    

    那么,经过周密的计算,一瞬间为0.36 秒,一刹那有 0.018 秒.一弹指长达 7.2 秒。
    (二)并发
    如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。

    2、使用redis有什么缺点

    分析:大家用redis这么久,这个问题是必须要了解的,基本上使用redis都会碰到一些问题,常见的也就几个。
    回答:主要是四个问题
    (一)缓存和数据库双写一致性问题
    (二)缓存雪崩问题
    (三)缓存击穿问题
    (四)缓存的并发竞争问题
    这四个问题,我个人是觉得在项目中,比较常遇见的,具体解决方案,后文给出。

    3、单线程的redis为什么这么快

    分析:这个问题其实是对redis内部机制的一个考察。其实根据博主的面试经验,很多人其实都不知道redis是单线程工作模型。所以,这个问题还是应该要复习一下的。
    回答:主要是以下三点
    (一)纯内存操作
    (二)单线程操作,避免了频繁的上下文切换
    (三)采用了非阻塞I/O多路复用机制

    题外话****:我们现在要仔细的说一说I/O多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。博主打一个比方:小曲在S城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。
    经营方式一
    客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。慢慢的小曲就发现了这种经营方式存在下述问题

    · 几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递

    · 随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了

    · 快递员之间的协调很花时间

    综合上述缺点,小曲痛定思痛,提出了下面的经营方式
    经营方式二
    小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。最后,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。

    对比
    上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢。在上述比喻中:

    · 每个快递员------------------>每个线程

    · 每个快递-------------------->每个socket(I/O流)

    · 快递的送达地点-------------->socket的不同状态

    · 客户送快递请求-------------->来自客户端的请求

    · 小曲的经营方式-------------->服务端运行的代码

    · 一辆车---------------------->CPU的核数

    于是我们有如下结论
    1、经营方式一就是传统的并发模型,每个I/O流(快递)都有一个新的线程(快递员)管理。
    2、经营方式二就是I/O多路复用。只有单个线程(一个快递员),通过跟踪每个I/O流的状态(每个快递的送达地点),来管理多个I/O流。

    下面类比到真实的redis线程模型,如图所示

    参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。
    需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。

    4、redis的数据类型,以及每种数据类型的使用场景

    分析:是不是觉得这个问题很基础,其实我也这么觉得。然而根据面试经验发现,至少百分八十的人答不上这个问题。建议,在项目中用到后,再类比记忆,体会更深,不要硬记。基本上,一个合格的程序员,五种类型都会用到。
    回答:一共五种
    (一)String
    这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。
    (二)hash
    这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。
    (三)list
    使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。
    (四)set
    因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。
    另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能
    (五)sorted set
    sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,参照另一篇《分布式之延时任务方案解析》,该文指出了sorted set可以用来做延时任务。最后一个应用就是可以做范围查找

    5、redis的过期策略以及内存淘汰机制

    分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?
    回答:
    redis采用的是定期删除+惰性删除策略。
    为什么不用定时删除策略?
    定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
    定期删除+惰性删除是如何工作的呢?
    定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
    于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。
    采用定期删除+惰性删除就没其他问题了么?
    不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制
    在redis.conf中有一行配置

    # maxmemory-policy volatile-lru
    

    该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)
    1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
    2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
    3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
    4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
    5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
    6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
    ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

    6、redis和数据库双写一致性问题

    分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。
    回答:《分布式之数据库和缓存双写一致性方案解析》给出了详细的分析,在这里简单的说一说。首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

    7、如何应对缓存穿透和缓存雪崩问题

    分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。
    回答:如下所示
    缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。
    解决方案:
    (一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
    (二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
    (三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。
    缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。
    解决方案:
    (一)给缓存的失效时间,加上一个随机值,避免集体失效。
    (二)使用互斥锁,但是该方案吞吐量明显下降了。
    (三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

    · I 从缓存A读数据库,有则直接返回

    · II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。

    · III 更新线程同时更新缓存A和缓存B。

    8、如何解决redis的并发竞争key问题

    分析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。
    回答:如下所示
    (1)如果对这个key操作,不要求顺序
    这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。
    (2)如果对这个key操作,要求顺序
    假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.
    期望按照key1的value值按照 valueA-->valueB-->valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

    .

    系统A key 1 {valueA 3:00}

    .

    .

    系统B key 1 {valueB 3:05}

    .

    .

    系统C key 1 {valueC 3:10}

    .

    那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

    其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

  • 相关阅读:
    接口测试基础
    python学习笔记(一)
    Charles学习笔记
    接口测试笔记
    【CSS】Beginner5:Margins&Padding
    【CSS】Beginner4:Text
    【CSS】Beginner3:Color
    【CSS】Beginner2:Selectors, Properties, and Values
    【CSS】Beginner1:Applying CSS
    【HTML】Beginner9:Form
  • 原文地址:https://www.cnblogs.com/xwxz/p/14981418.html
Copyright © 2011-2022 走看看