1 当要运行的数据很大时,可以利用下面的程序估算函数的执行时间,该程序只适用于程序执行时间与执行行数呈一次函数的情况.
import pandas as pd import datetime as dt import matplotlib.pyplot as plt every_time = [] line_number = np.arange(1, 9, 1) * 1000 for j in line_number: # 读取的是h5文件时 # user_repay = pd.read_hdf('user_repay_first.h5') # user_repay = user_repay.head(j) #读取的是csv文件时 file1 = pd.read_hdf('user_repay_first.csv', nrows = j) time1 = dt.datetime.now() file2 = function() every_time.append((dt.datetime.now() - time1).total_seconds()) del file1,file2 func = np.polyfit(line_number,every_time, deg=1) plt.figure(figsize=(10, 5.5)) plt.plot(line_number, np.polyval(func, line_number)) plt.scatter(line_number,every_time) plt.show() print('拟合函数的系数是:', func) prediction_time = (func[0] * file1.shape[0] + func[1])/3600 print('预计用时:', str(int(prediction_time)) +' hour')
2只需导入time包,在程序开头和结尾加上记录时刻的函数,最后相减
import time start = time.time() run_function() end = time.time() print str(end)
参考:https://blog.csdn.net/laobai1015/article/details/83618971