zoukankan      html  css  js  c++  java
  • BZOJ2648: SJY摆棋子

    BZOJ2648: SJY摆棋子

    题目大意

    二维平面内,支持插入点和查询最近点(曼哈顿距离)

    K-D Tree的模板题

    插入很暴力就不讲了

    查询时,$ans$为全局变量,先用该点位置与更新$ans$,算出与左右子树矩阵的曼哈顿距离

    如果$ans$$<$子树距离则不下移了

    $dl$表与左子树距离,$dr$表与右子树距离,这里有一个很巧妙的剪枝

        if(dl<dr){
            if(dl<ans) 
    		    Query(l,tmp);
            if(dr<ans) 
    		    Query(r,tmp);
        }
        else{
            if(dr<ans) 
    		    Query(r,tmp);
            if(dl<ans) 
    		    Query(l,tmp);
        }
    

    表面看上部分似乎与下部分一样,其实这里利用距离确定先后$ans$能尽量接近最终值,起到剪枝效果

    My complete code:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const LL maxn=1000000;
    const LL inf=0x3f3f3f3f;
    struct code{
    	LL d[2];
    }sot[maxn],tmp;
    struct node{
    	LL son[2],mi[2],mx[2],size;
    	code tp;
    }tree[maxn];
    LL n,m,WD,cnt,nod,root,ans,top;
    LL zhan[maxn];
    inline LL Read(){
    	LL x=0,f=1; char c=getchar();
    	while(c<'0'||c>'9'){
    		if(c=='-') f=-1; c=getchar();
    	}
    	while(c>='0'&&c<='9'){
    		x=(x<<3)+(x<<1)+c-'0'; c=getchar();
    	}return x*f;
    }
    inline void Update(LL now){
    	LL l=tree[now].son[0],r=tree[now].son[1];
    	tree[now].size=tree[l].size+tree[r].size+1;
    	for(LL i=0;i<=1;++i)
    	    tree[now].mi[i]=min(tree[now].tp.d[i],min(tree[l].mi[i],tree[r].mi[i])),
    	    tree[now].mx[i]=max(tree[now].tp.d[i],max(tree[l].mx[i],tree[r].mx[i]));
    }
    inline LL Newnode(){
    	return top!=0?zhan[top--]:++nod;
    }
    bool operator < (code g1,code g2){
    	return g1.d[WD]<g2.d[WD];
    }
    LL Build(LL l,LL r,LL wd){
    	if(l>r)
    	    return 0;
    	LL mid=(l+r)>>1,now=Newnode();
    	WD=wd,
    	nth_element(sot+l,sot+mid,sot+r+1),
    	tree[now].tp=sot[mid],
    	tree[now].son[0]=Build(l,mid-1,wd^1),
        tree[now].son[1]=Build(mid+1,r,wd^1),
        Update(now);
        return now;
    }
    void Pai(LL now,LL num){
    	LL l=tree[now].son[0],r=tree[now].son[1];
    	if(l)
    	    Pai(l,num);
    	sot[num+tree[l].size+1]=tree[now].tp;
    	zhan[++top]=now;
    	if(r)
    	    Pai(r,num+tree[l].size+1);
    }
    inline void Check(LL &now,LL wd){
    	LL l=tree[now].son[0],r=tree[now].son[1];
    	if(tree[now].size*0.75<tree[l].size || tree[now].size*0.75<tree[r].size)
    		Pai(now,0),
    		now=Build(1,tree[now].size,wd);
    }
    void Insert(LL &now,code tmp,LL wd){
    	if(!now){
    		now=Newnode(),
    		tree[now].tp=tmp,
    		tree[now].son[0]=tree[now].son[1]=0,
    		Update(now);
    		return;
    	}
    	tmp.d[wd]<tree[now].tp.d[wd]?Insert(tree[now].son[0],tmp,wd^1):Insert(tree[now].son[1],tmp,wd^1);
    	Update(now),
    	Check(now,wd);
    }
    inline LL Dis(code g1,code g2){
    	return abs(g1.d[0]-g2.d[0])+abs(g1.d[1]-g2.d[1]);
    }
    inline LL Mh(code tmp,LL now){
    	LL sum=0;
        for(LL i=0;i<=1;++i)
            sum+=max((long long)0,tmp.d[i]-tree[now].mx[i])+max((long long)0,tree[now].mi[i]-tmp.d[i]);
        return sum;
    }
    void Query(LL now,code tmp){
    	LL l=tree[now].son[0],r=tree[now].son[1];
    	ans=min(ans,Dis(tmp,tree[now].tp));
    	LL dl=inf,dr=inf;
    	if(l)
    	    dl=min(dl,Mh(tmp,l));
    	if(r)
    	    dr=min(dr,Mh(tmp,r));
    	if(dl<dr){
            if(dl<ans) 
    		    Query(l,tmp);
            if(dr<ans) 
    		    Query(r,tmp);
        }
        else{
            if(dr<ans) 
    		    Query(r,tmp);
            if(dl<ans) 
    		    Query(l,tmp);
        }
    }
    int main(){
    	n=Read(),m=Read(),
    	tree[0].mi[0]=tree[0].mi[1]=inf,
    	tree[0].mx[0]=tree[0].mx[1]=-inf;
    	for(LL i=1;i<=n;++i)
    		sot[i].d[0]=Read(),
    		sot[i].d[1]=Read();
    	root=Build(1,n,1);
    	while(m--){
    		LL op=Read();
    		tmp.d[0]=Read(),
    		tmp.d[1]=Read();
    		if(op==1)
    			Insert(root,tmp,1);
    		else{
    			ans=inf;
    			Query(root,tmp);
    			printf("%lld
    ",ans);
    		}
    	}
    }/*
    0 10000
    1 1 1
    1 1 5
    1 2 5
    1 5 2
    1 6 7
    */
    

      

  • 相关阅读:
    1. Window环境下
    A-Frame 简介03
    A-frame_02
    A-Frame_简单介绍
    iOS_UIWebView加载本地html文件路径问题
    AVAudioRecorder 录制音频
    内存管理, 对象的生命周期
    02-socket编程
    01-socket第三方库 AsyncSocket(GCDAsyncSocket)
    01-MKNetworkKit介绍及使用
  • 原文地址:https://www.cnblogs.com/y2823774827y/p/10125796.html
Copyright © 2011-2022 走看看