zoukankan      html  css  js  c++  java
  • LeetCode581. Shortest Unsorted Continuous Subarray


    Description

    Given an integer array, you need to find one continuous subarray that if you only sort this subarray in ascending order, then the whole array will be sorted in ascending order, too.

    You need to find the shortest such subarray and output its length.

    Example 1:

    Input: [2, 6, 4, 8, 10, 9, 15]
    Output: 5
    Explanation: You need to sort [6, 4, 8, 10, 9] in ascending order to make the whole array sorted in ascending order.

    Note:
    Then length of the input array is in range [1, 10,000].
    The input array may contain duplicates, so ascending order here means <=.

    my program

    思路:构建一个排序好的数组,然后与原数组进行对比,找出最先和最后不同的元素,相减+1即为所求答案。此算法时间复杂度是O(nlogn),空间复杂度是O(n).

    class Solution {
    public:
        int findUnsortedSubarray(vector<int>& nums) {
            vector<int> tmp = nums;
            sort(tmp.begin(), tmp.end());
            int i = 0;
            int j = nums.size() -1;
            for (; i< nums.size(); i++) {
                if (nums[i] != tmp[i])
                    break;
            }
            if (i >= nums.size())
                return 0;
            for (; j > 0; j--) {
                if (nums[j] != tmp[j])
                    break;
            }
            return j - i + 1;
        }
    };

    Submission Details
    307 / 307 test cases passed.
    Status: Accepted
    Runtime: 56 ms

    解法二

    /**
     *            /------------
     * nums:  [2, 6, 4, 8, 10, 9, 15]
     * minr:   2  4  4  8   9  9  15
     *         <--------------------
     * maxl:   2  6  6  8  10 10  15
     *         -------------------->
     */
    class Solution {
    public:
        int findUnsortedSubarray(vector<int>& nums) {
            int n = nums.size();
            vector<int> maxlhs(n);   // max number from left to cur
            vector<int> minrhs(n);   // min number from right to cur
            for (int i = n - 1, minr = INT_MAX; i >= 0; i--) minrhs[i] = minr = min(minr, nums[i]);
            for (int i = 0,     maxl = INT_MIN; i < n;  i++) maxlhs[i] = maxl = max(maxl, nums[i]);
    
            int i = 0, j = n - 1;
            while (i < n && nums[i] <= minrhs[i]) i++;
            while (j > i && nums[j] >= maxlhs[j]) j--;
    
            return j + 1 - i;
        }
    };

    此算法时间复杂度仅是O(n),空间复杂度是O(n). 优于第一种算法

  • 相关阅读:
    WINFORM如何禁止调整窗体大小
    C#发布程序添加其他程序文件
    C#发布程序添加其他程序文件
    C# AES加密解密
    C# AES加密解密
    C# winform combobox控件中子项加删除按钮
    C# winform combobox控件中子项加删除按钮
    1017:浮点型数据类型存储空间大小
    1017:浮点型数据类型存储空间大小
    1016:整型数据类型存储空间大小
  • 原文地址:https://www.cnblogs.com/yangjiannr/p/7391332.html
Copyright © 2011-2022 走看看