zoukankan      html  css  js  c++  java
  • 从源码看集合ArrayList

         可能大家都知道,java中的ArrayList类,是一个泛型集合类,可以存储指定类型的数据集合,也知道可以使用get(index)方法通过索引来获取数据,或者使用for each 遍历输出集合中的内容,但是大家可能对其中的具体的方法是怎么实现的不大了解,本篇就将从jdk源码的角度看看什么是动态扩容数组(毕竟我们不应该停留在会用的层面上)。本篇主要从以下几个角度看看ArrayList:
    • add及其重载方法是如何实现的
    • remove及其重载方法是如何实现的
    • 迭代器的本质及实现的基本原理


      一、add方法添加元素到集合中
           实际上ArrayList内部是用的 transient Object[] elementData;这么一条语句定义的一个Object类型的数组,因为我们知道数组一旦被初始化长度就不能再发生改变,那我们的ArrayList是怎么做到可以不断的添加元素到集合中的呢?其实就是通过创建新的数组,将原来的数组中的内容转移到新的数组中来,实现动态扩容。具体的我们看源码:
    public static void main(String[] args){
    		ArrayList<Integer> list = new ArrayList<Integer>();
    		list.add(1);
    	}
    /*这是最简单的add方法*/
    public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            elementData[size++] = e;
            return true;
        }
    


              当调用此add方法时,将指定了类型的数据传入(变量e接受),首先执行第一条语句:ensureCapacityInternal(size + 1);,这条语句实际上就是用来判断size+1之后是否会导致原数组长度溢出,如果会就扩充数组容量,如果没有就什么也不做。我们看看ensureCapacityInternal方法内部源码:

    private void ensureCapacityInternal(int minCapacity) {
            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
                minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
            }
    
            ensureExplicitCapacity(minCapacity);
        }
    	/*ensureExplicitCapacity*/
        private void ensureExplicitCapacity(int minCapacity) {
            modCount++;
    
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);
        }
    


              首先判断当前数组是否为空,默认数组长度为DEFAULT_CAPACITY=10,minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);表示:如果数组还未初始化即刚刚声明并未做任何操作,就取10作为数据容量值,然后调用方法ensureExplicitCapacity(minCapacity);设置数组长度。
              接受过传入的数据容量值,执行modCount++;增加修改次数(后文会说为什么有这个计数器),判断数据容量值是否比现数组长度大,如果数据容量值超过现有数组长度(需要扩容),执行:grow(minCapacity);,我们可以看看他是怎么进行扩容的。

    private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1);
            if (newCapacity - minCapacity < 0)
                newCapacity = minCapacity;
            if (newCapacity - MAX_ARRAY_SIZE > 0)
                newCapacity = hugeCapacity(minCapacity);
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
    


              这条语句 int newCapacity = oldCapacity + (oldCapacity >> 1);通过位右移将新数组容量扩充为原来的1.5倍。数组的每次扩容都是,扩充为原来的1.5倍。下面是一系列的判断,最终确定新数组的长度,调用Arrays.copyOf方法,新建数组并且转移原数组内容。再往下,就不深究了。。
              最后小结一下整个过程,调用add 方法首先调用ensureCapacityInternal方法,如果原数组是空的就将10作为数据容量值,然后判断数据容量值是否大于当前数组长度(如果当前数组是空数组的话,自然长度为0),然后进行扩充数组容量,创建新数组返回。如果原数组非空,将判断数据容量值是否大于现数组长度,否说明添加此新元素之后数据量长度仍然小于数组长度(数组长度足够),是就会调用grow方法创建新数组赋值elementData数组。
              add的另一个比较麻烦的方法是,addAll方法,其他的重载方法类似,本篇不再赘述。下面我们一起看看addAll方法原理。

    public boolean addAll(Collection<? extends E> c) {
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
            System.arraycopy(a, 0, elementData, size, numNew);
            size += numNew;
            return numNew != 0;
        }
    


              addAll()方法的动态扩容和添加数值都和add 类似,我们主要理解一下,他的这个参数是什么意思,也顺便复习一下泛型相关内容。这里写图片描述

              大家知道Collection<? extends E>作为类型,有哪些类型可以作为形参传入?假如E是Number类型,Collection<Integer>,Collection<Float>,Collection<Double>,都是可以作为形参传入的。而所有继承Collection接口的类也可以作为形参传入,例如:List<Integer>,Set<Integer>,List<Double>,ArrayList<Integer>,等等,但在本方法中是需要调用toArray这个具体的方法的,所以只能使具体类作为形参传入,这样就保证,形参是可以是任意类型的集合(前提是此类型必须继承与我们指定的E)。

         二、Remove方法的实现原理
              既然集合是可以添加元素的,自然也是可以删除元素的,接下来我们一起看看ArrayList的Remove方法。

    /*根据集合索引删除任意位置的元素*/
     public E remove(int index) {
            rangeCheck(index);
    
            modCount++;
            E oldValue = elementData(index);
    
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
    
            return oldValue;
        }
    


              第一行代码很简单,rangeCheck(index);,检查指定索引是否越界,如果越界抛出异常。然后计算出,移除后的数据容量,因为经过判断index是<size的,也就是说numMoved >=0。判断是否大于0,如果等于0表示原来就一个数据,直接将其赋值null交给GC回收即可。如果大于0,执行System.arraycopy方法,因为此方法为native方法,我们不得而知它是如何实现的,但是我们可以大致猜出他是这样实现的:以索引位置开始,索引位置后面的数组元素向前覆盖。例如:index=3;elementData[3]=elementData[4],elementData[4]=elementData[5]等等。最后将最后位置的元素赋值为null。
              以上便是remove方法的简单原理,至于其他重载与上述类似。接下来,我们看看重要的迭代器。

         三、迭代器

    public interface Iterator<E> {
     boolean hasNext();
     E next();
     default void remove() {
            throw new UnsupportedOperationException("remove");
        }
     default void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (hasNext())
                action.accept(next());
        }
    }
    


              我们把接口 Iterator<E>叫做迭代器接口。通过反复调用next方法可以访问到所有的元素,当访问到最后一个元素的下一的位置时,就会抛出异常,所以我们常常在调用next方法之前调用hasNext方法判断是否还有下一个元素,remove方法表示删除元素(一个要求,调用remove方法之前一定要先调用next方法,这一点下文说)
              了解完 Iterator<E>,我们看看另一个和它相关的接口,Iterable<E>:

    public interface Iterable<T> {
    Iterator<T> iterator();
    default void forEach(Consumer<? super T> action) {
            Objects.requireNonNull(action);
            for (T t : this) {
                action.accept(t);
            }
        }
     default Spliterator<T> spliterator() {
            return Spliterators.spliteratorUnknownSize(iterator(), 0);
        }
    }
    


              这个接口 Iterable<E>表示可迭代,强调了可以迭代的这种能力。声明一个方法 iterator();返回 Iterable<E> 迭代器接口,所有实现了 Iterable<E>接口的类都是可以使用for each 循环遍历集合中元素的。当我们的类实现 Iterable<E>接口时,可以使用for each 循环集合,其实内部还是,通过调用方法 iterator()实现当前集合和迭代器的一种类似于绑定的过程,最终返回迭代器接口,实际上for each 语法还是调用的是 迭代器接口中声明的方法 类似:

    ArrayList<Integer> list = new ArrayList<Integer>();
    list.add(1);
    list.add(2);
    list.add(3);
    list.add(4);
    list.add(5);
    Iterator<Integer> i = list.interator();
    while(i.hasNext()){
    	System.out.println(i.next);
    }
    /*for each 语句的本质其实就是这样*/
    


              下面要说的关于迭代器的一个重要的特性,迭代器的结构不可破坏性。就是说,在进行迭代的过程中,是不允许改变原集合的结构性的,集合的结构性就是指:对集合进行添加(add),删除(remove)。对集合的修改操作不属于破坏集合的结构性。例如:

    for(Integer a : list){
    	if(a == 3){
    		list.remove(a);  //throw exception
    	}
    }
    //破坏了集合的结构性,不允许的。
    


              要想解决这个问题就要看看ArrayList中是怎么实现迭代器的。实际上是通过内部类来实现迭代器接口的。

    public Iterator<E> iterator() {
            return new Itr();
        }
    //内部类,我们只看其中remove方法
    private class Itr implements Iterator<E> {
            int cursor;       // index of next element to return
            int lastRet = -1; // index of last element returned; -1 if no such
            int expectedModCount = modCount;
       //remove方法
        public void remove() {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.remove(lastRet);
                    cursor = lastRet;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    


              我们之所以在for each循环中不能破坏结构性,是因为for each每次调用next方法时,都会检查是否破坏了结构性,而这种检查就是依靠modCount 这个变量,通过对比前后的修改次数得出是否破坏了结构性,在我们的remove方法中,调用了外部类remove方法删除元素,并且 expectedModCount = modCount; 更新了修改次数变量,使得下次检查时,不会出现结构性破坏。

    Iterator<Integer> it = list.interator();
    while(it.hasNext()){
    	if(it.next().equals(1)){
    		it.remove();
    	}
    }
    


              最后想要强调一点的是,迭代器中调用remove方法之前一定要,调用next方法,例如:

    Iterator<Integer> it = list.interator();
    while(it.hasNext()){
    	it.remove();
    }//报错
    


              现在大家能够想明白为什么在调用remove方法之前一定要调用next方法了吧,因为next方法为lastRet和cursor重置数值,如果没有next方法,lastRet为 -1 自然是不能用作删除的。
              本篇就此结束,如果文中有博主说的不清楚的地方,望大家指出!

  • 相关阅读:
    Navicat For SQL Server 修改字段为自增主键
    navicat for sql server 12下载地址
    git 同时关联多个远程库
    Mysql general_log 日志详解
    angular教程
    Python代码写好了怎么运行?
    python mysql自增字段AUTO_INCREMENT值的修改方式
    Python自学教材推荐 初学者必看
    永久性差异
    如何关闭搜狗的流氓弹窗广告
  • 原文地址:https://www.cnblogs.com/yangming1996/p/6444408.html
Copyright © 2011-2022 走看看