zoukankan      html  css  js  c++  java
  • LeetCode OJ 322. Coin Change DP求解

        题目链接:https://leetcode.com/problems/coin-change/

    322. Coin Change

    My Submissions
    Total Accepted: 15289 Total Submissions: 62250 Difficulty: Medium

    You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

    Example 1:
    coins = [1, 2, 5], amount = 11
    return 3 (11 = 5 + 5 + 1)

    Example 2:
    coins = [2], amount = 3
    return -1.

    Note:
    You may assume that you have an infinite number of each kind of coin.

    Credits:
    Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

    Subscribe to see which companies asked this question

    Show Tags
    Have you met this question in a real interview? 
    Yes
     
    No

    Discuss

        给定几个固定面值的硬币,能够无限使用。

    一个目标数。要求用最少的硬币兑换这个target。

        换一种思路理解题目,每次能够走给定面值的步数。问最少走多少步能达到目标。

    如此一来便能够用BFS求解。

        另外一种解法是DP,dp[i] = min {dp[i - a], dp[i - b], dp[i - c] ...... }。动态规划仅仅要有公式就能非常快求解。

        我用DP求解的AC代码

    package march;
    
    import java.util.Arrays;
    
    /**
     * @auther lvsheng
     * @date 2016年3月16日
     * @time 下午11:20:44
     * @project LeetCodeOJ
     * 
     */
    
    public class CoinChange {
    	public static void main(String[] args) {
    		int[] a = { 1, 2, 5 };
    		System.out.println(coinChange(a, 11));
    		int[] b = { 2 };
    		System.out.println(coinChange(b, 3));
    	}
    
    	public static int coinChange(int[] coins, int amount) {
    		int len = coins.length;
    		if (len == 0) return -1;
    		int[] dp = new int[amount + 1];
    		Arrays.fill(dp, Integer.MAX_VALUE);
    		dp[0] = 0;
    
    		Arrays.sort(coins);
    
    		for (int i = 0; i < len && coins[i] <= amount; i++) dp[coins[i]] = 1;
    
    		for (int i = 1; i <= amount; i++) {
    			int min = dp[i];
    			if (min == 1) continue;
    			for (int j = 0; j < len && coins[j] < i; j++) {
    				int c = coins[j];
    				int d = dp[i - c];
    				if (d != Integer.MAX_VALUE && d < min) min = d + 1;
    			}
    			dp[i] = min;
    		}
    
    		return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
    	}
    }
    


  • 相关阅读:
    redis使用基础(十) ——Redis存储Session
    redis使用基础(十一) ——Redis特殊情况处理机制
    redis使用基础(八) ——Redis命令属性
    redis使用基础(九) ——Redis虚拟内存
    性能
    laradock phpstorm xdebug
    docker笔记
    go注意点
    微服务
    分布式
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/7136030.html
Copyright © 2011-2022 走看看