zoukankan      html  css  js  c++  java
  • HDOJ 5091 Beam Cannon 扫描线


    线段树+扫描线:

    我们用矩形的中心点来描写叙述这个矩形,然后对于每一个敌舰,我们建立一个矩形中心的活动范围,即矩形中心在该范围内活动就能够覆盖到该敌舰.那么我们要求的问题就变成了:随意一个区域(肯定也是矩形的)最多能被矩形覆盖的最大值.

    Beam Cannon

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 159    Accepted Submission(s): 59


    Problem Description
    Recently, the γ galaxies broke out Star Wars. Each planet is warring for resources. In the Star Wars, Planet X is under attack by other planets. Now, a large wave of enemy spaceships is approaching. There is a very large Beam Cannon on the Planet X, and it is very powerful, which can destroy all the spaceships in its attack range in a second. However, it takes a long time to fill the energy of the Beam Cannon after each shot. So, you should make sure each shot can destroy the enemy spaceships as many as possible.

    To simplify the problem, the Beam Cannon can shot at any area in the space, and the attack area is rectangular. The rectangle parallels to the coordinate axes and cannot rotate. It can only move horizontally or vertically. The enemy spaceship in the space can be considered as a point projected to the attack plane. If the point is in the rectangular attack area of the Beam Cannon(including border), the spaceship will be destroyed.
     

    Input
    Input contains multiple test cases. Each test case contains three integers N(1<=N<=10000, the number of enemy spaceships), W(1<=W<=40000, the width of the Beam Cannon’s attack area), H(1<=H<=40000, the height of the Beam Cannon’s attack area) in the first line, and then N lines follow. Each line contains two integers x,y (-20000<=x,y<=20000, the coordinates of an enemy spaceship). 

    A test case starting with a negative integer terminates the input and this test case should not to be processed.
     

    Output
    Output the maximum number of enemy spaceships the Beam Cannon can destroy in a single shot for each case.
     

    Sample Input
    2 3 4 0 1 1 0 3 1 1 -1 0 0 1 1 0 -1
     

    Sample Output
    2 2
     

    Source
     




    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #include <cmath>
    
    using namespace std;
    
    const int maxn=30100;
    
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    
    struct SEG
    {
      double y1,y2,h;
      int d;
    }seg[maxn<<2];
    
    bool cmp(SEG a,SEG b)
    {
      if(a.h==b.h) return a.d>b.d;
      return a.h<b.h;
    }
    
    int add[maxn<<2],mx[maxn<<2];
    int n,sn;
    double W,H;
    
    double Y[maxn<<2];
    int ny;
    
    void push_up(int rt)
    {
      mx[rt]=max(mx[rt<<1],mx[rt<<1|1]);
    }
    
    void push_down(int rt)
    {
      if(add[rt])
        {
          mx[rt<<1]+=add[rt]; mx[rt<<1|1]+=add[rt];
          add[rt<<1]+=add[rt]; add[rt<<1|1]+=add[rt];
          add[rt]=0;
        }
    }
    
    void update(int L,int R,int D,int l,int r,int rt)
    {
      if(L<=l&&r<=R)
        {
          add[rt]+=D;
          mx[rt]+=D;
          return ;
        }
      push_down(rt);
      int m=(l+r)/2;
      if(L<=m) update(L,R,D,lson);
      if(R>m) update(L,R,D,rson);
      push_up(rt);
    }
    
    int main()
    {
      while(scanf("%d",&n)!=EOF&&n>0)
        {
          scanf("%lf%lf",&W,&H);
          sn=0; ny=0;
          for(int i=0;i<n;i++)
            {
              double x,y;
              scanf("%lf%lf",&x,&y);
              seg[sn++]=(SEG){y-H/2,y+H/2,x-W/2,1};
              seg[sn++]=(SEG){y-H/2,y+H/2,x+W/2,-1};
              Y[ny++]=y-H/2; Y[ny++]=y+H/2;
            }
    
          sort(seg,seg+sn,cmp);
          sort(Y,Y+ny);
          ny=unique(Y,Y+ny)-Y;
    
          memset(add,0,sizeof(add));
          memset(mx,0,sizeof(mx));
    
          int ans=0;
          for(int i=0;i<sn;i++)
            {
              int y1=lower_bound(Y,Y+ny,seg[i].y1)-Y+1;
              int y2=lower_bound(Y,Y+ny,seg[i].y2)-Y+1;
              update(y1,y2,seg[i].d,1,ny,1);
              ans=max(ans,mx[1]);
            }
          printf("%d
    ",ans);
        }
      return 0;
    }
    


  • 相关阅读:
    poj1286 polya计数法
    hdu 2079 普通母函数的应用
    hdu1521 指数型母函数 求解多重集排列数
    hdu1398 普通母函数的应用 解决多重集组合问题
    hdu1085 多重部分和问题
    二部图最大匹配问题的求解 匈牙利算法
    tarjan算法
    Prim算法
    无向图连通图(割)
    无向图找桥
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/7191765.html
Copyright © 2011-2022 走看看