http://acm.hdu.edu.cn/showproblem.php?pid=4455
Substrings
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2229 Accepted Submission(s): 695
Problem Description
XXX has an array of length n. XXX wants to know that, for a given w, what is the sum of the distinct elements’ number in all substrings of length w. For example, the array is { 1 1 2 3 4 4 5 } When w = 3, there are five substrings of length 3. They are (1,1,2),(1,2,3),(2,3,4),(3,4,4),(4,4,5)
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
Input
There are several test cases.
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Output
For each test case, your program should output exactly Q lines, the sum of the distinct number in all substrings of length w for each query.
Sample Input
7 1 1 2 3 4 4 5 3 1 2 3 0
Sample Output
7 10 12
/** hdu4455 dp 题目大意:给定一个序列,求其全部长度为w的子区间中不同元素的个数之和 解题思路:这个题与其说是dp还不如说是递推好一些。首先定义c[i]表示前面近期的与其同样的数的距离是i的数的个数,sum[i]表示前面近期的与其同样的数 的距离大于等于i的数的个数。num[i]表示最后一个长度为i的区间含有的不同数的个数。dp[1]=n,dp[i]=dp[i-1]-num[i]+sum[i]; */ #include <stdio.h> #include <algorithm> #include <string.h> #include <iostream> using namespace std; const int maxn=1000050; typedef long long LL; int c[maxn],sum[maxn],num[maxn],pre[maxn]; LL dp[maxn]; int n,m,a[maxn]; int main() { while(~scanf("%d",&n)) { if(n==0)break; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } memset(pre,0,sizeof(pre)); memset(c,0,sizeof(c)); for(int i=1;i<=n;i++) { c[i-pre[a[i]]]++; pre[a[i]]=i; } sum[n]=c[n]; for(int i=n-1;i>0;i--) { sum[i]=sum[i+1]+c[i]; } memset(c,0,sizeof(c));///数组重用 c[a[n]]=1; num[1]=1; for(int i=2;i<=n;i++) { if(c[a[n-i+1]]==0) { num[i]=num[i-1]+1; c[a[n-i+1]]=1; } else { num[i]=num[i-1]; } } dp[1]=n; for(int i=2;i<=n;i++) { dp[i]=dp[i-1]-num[i-1]+sum[i]; } scanf("%d",&m); for(int i=0;i<m;i++) { int x; scanf("%d",&x); printf("%I64d ",dp[x]); } } return 0; }