zoukankan      html  css  js  c++  java
  • ORACLE的DDL日志 推送到Kafka,并用Flink进行实时计算

    ORACLE的DDL日志 推送到Kafka,并用Flink进行实时统计

    本次测试的环境:
    环境:docker oracle12c 
    日志模式:归档日志模式 archivelog
    用户:scott/tiger 具有dba权限
    大数据组件:kafka(默认创建好topic:flink_topic),zookeeper
    额外组件:kafka-connect-oracle-1.0.jar
    下载地址: https://github.com/erdemcer/kafka-connect-oracle

    1. 创建测试表,并插入几条记录

    2.开启归档日志模式

    sqlplus / as sysdba
    SQL> shutdown immediate
    SQL> startup mount
    SQL> alter database archivelog;
    SQL> alter database open;
    SQL> alter database add supplemental log data (all) columns;
    SQL> conn username/password

    3.准备相关Jar包

    1. 从https://github.com/erdemcer/kafka-connect-oracle下载整个项目,把整个项目mvn clean package成kafa-connect-oracle-1.0.jar
    2. 下载一个oracle的jdbc驱动jar—ojdbc7.jar
    3. 将kafa-connect-oracle-1.0.jar and ojdbc7.jar放在kafka的安装包下的lib目录下
    4. 将github项目里面的config/OracleSourceConnector.properties文件拷贝到kafak/config

    4. 配置相关文件

    # vi /opt/cloudera/parcels/KAFKA/lib/kafka/config/OracleSourceConnector.properties

    # vi /opt/cloudera/parcels/KAFKA/lib/kafka/config/connect-standalone.properties

     5. 运行启动Connector

    bin/connect-standalone.sh config/connect-standalone.properties config/OracleSourceConnector.properties

    6. 启动consumer

    bin/kafka-console-consumer.sh --bootstrap-server 192.168.58.177:9092 --from-beginning --topic flink_topic

    7. 最后结果

    {"schema":{"type":"struct","fields":
    [
        {"type":"int64","optional":false,"field":"SCN"},
        {"type":"string","optional":false,"field":"SEG_OWNER"},
        {"type":"string","optional":false,"field":"TABLE_NAME"},
        {"type":"int64","optional":false,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"TIMESTAMP"},
        {"type":"string","optional":false,"field":"SQL_REDO"},
        {"type":"string","optional":false,"field":"OPERATION"},
        {"type":"struct","fields":
            [
                {"type":"double","optional":true,"field":"ID"},
                {"type":"string","optional":true,"field":"NAME"}
            ],"optional":true,"name":"value","field":"data"},
        {"type":"struct","fields":
            [
                {"type":"double","optional":true,"field":"ID"},
                {"type":"string","optional":true,"field":"NAME"}
            ],"optional":true,"name":"value","field":"before"}
    ],"optional":false,"name":"flink_test.scott.test_20200402.row"},
    "payload":
    {
        "SCN":1719627,
        "SEG_OWNER":"SCOTT",
        "TABLE_NAME":"TEST_20200402",
        "TIMESTAMP":1585773001000,
        "SQL_REDO":"insert into "SCOTT"."TEST_20200402"("ID","NAME") values (2,'zhangfei')",
        "OPERATION":"INSERT",
        "data":{"ID":2.0,"NAME":"zhangfei"},
        "before":null
    }
    }

    8.Flink中读取数据 Demo

        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment Env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "192.168.58.177:9092");
            properties.setProperty("zookeeper.connect", "192.168.58.171:2181,192.168.58.177:2181");
            properties.setProperty("group.id", "test");
    
            FlinkKafkaConsumer myConsumer = new FlinkKafkaConsumer("flink_topic",new SimpleStringSchema(),properties);
    
    
            //设置并行度
            myConsumer.setStartFromEarliest();
    
            //添加数据源,json格式
            DataStreamSource<ObjectNode> stream = Env.addSource(myConsumer);
    
            stream.print();
    
            Env.execute("flink_topic");
        }
    
    
        public static class DataS{
    
            public Integer id;
            public String name;
    
            public Integer getId() {
                return id;
            }
    
            public void setId(Integer id) {
                this.id = id;
            }
    
            public String getName() {
                return name;
            }
    
            public void setName(String name) {
                this.name = name;
            }
    
        }

     9. 运用Flink Sql进行实时计算

    package com.flink;
    import org.apache.flink.api.common.typeinfo.Types;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.table.api.Table;
    import org.apache.flink.table.api.java.StreamTableEnvironment;
    
    public class OracleToFlink {
        public static void main(String[] args) throws Exception {
    
            //创建flink运行环境
            StreamExecutionEnvironment Env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            //创建tableEnvironment
            StreamTableEnvironment TableEnv =  StreamTableEnvironment.create(Env);
    
            TableEnv.sqlUpdate("CREATE TABLE user_log2 (
    " +
                    "    payload ROW(SCN string,SEG_OWNER string,data ROW(ID DECIMAL,NAME string))
    " +
                    ") WITH (
    " +
                    "    'connector.type' = 'kafka',
    " +
                    "    'connector.version' = 'universal',
    " +
                    "    'connector.topic' = 'flink_topic',
    " +
                    "    'connector.startup-mode' = 'latest-offset',
    " +
                    "    'connector.properties.group.id' = 'test',
    " +
                    "    'connector.properties.zookeeper.connect' = '192.168.58.171:2181,192.168.58.177:2181,192.168.58.178:2181',
    " +
                    "    'connector.properties.bootstrap.servers' = '192.168.58.177:9092',
    " +
                    "    'format.type' = 'json',
    " +
                    "    'format.json-schema' =
    " +
                    "    '{
    " +
                    "        type : "object",
    " +
                    "        "properties":
    " +
                    "        {
    " +
                    "            "payload": {type : "object",
    " +
                    "                "properties": 
    " +
                    "                 {
    " +
                    "                    "SCN" : {type :"string"},
    " +
                    "                    "SEG_OWNER" : {type :"string"},
    " +
                    "                    "data": {type : "object",
    " +
                    "                    "properties": {"ID": {type : "integer"},
    " +
                    "                                   "NAME": {type : "string"}
    " +
                    "                                  }
    " +
                    "                             }
    " +
                    "                 }}
    " +
                    "        }
    " +
                    "    }'
    " +
                    ")"
            ) ;
    
            Table result=TableEnv.sqlQuery("select payload.data.NAME,sum(payload.data.ID) from user_log2 group by payload.data.NAME");
    
            TableEnv.toRetractStream(result,Types.TUPLE(Types.STRING,Types.STRING,Types.BIG_DEC,Types.STRING)) .print();
            Env.execute("flink job");
        }
    }

    运行结果:

  • 相关阅读:
    【转】点集 凸包
    【转】Word中使用Endnote很卡解决方案
    【转】一个程序员的面试经验之谈
    【转】 std list/vector sort 排序
    std::numeric_limits<int>::max() error C2589: '(' : illegal token on right side of '::' 解决办法
    【转】Log4cpp 封装
    【转】 log4cpp 的使用
    遍历目录 删除目录中包含指定字符的文件和文件夹
    mysql主从复制架构
    mysql分区功能详细介绍,以及实例
  • 原文地址:https://www.cnblogs.com/yaowentao/p/12625956.html
Copyright © 2011-2022 走看看