问题描述:
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Return 0 if the array contains less than 2 elements.
Example 1:
Input: [3,6,9,1] Output: 3 Explanation: The sorted form of the array is [1,3,6,9], either (3,6) or (6,9) has the maximum difference 3.
Example 2:
Input: [10] Output: 0 Explanation: The array contains less than 2 elements, therefore return 0.
Note:
- You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
- Try to solve it in linear time/space.
解题思路:
一开始首先想到先排序挨个算一遍,这样的话时间复杂度为O(nlogn + n)
但是后来看到说尝试在线性时间和空间中去解
没有什么好想法的我看了Grandyang的总结
使用了桶排序。
关于桶排序:https://blog.csdn.net/mupengfei6688/article/details/53106267
注意的是先找桶的大小,再找桶的个数。
最大差出现在桶与桶之间
代码:
O(nlogn)
class Solution { public: int maximumGap(vector<int>& nums) { if(nums.size() < 2) return 0; sort(nums.begin(), nums.end()); int ret = 0; for(int i = 0; i < nums.size() - 1; i++){ ret = max(ret, nums[i+1] - nums[i]); } return ret; } };
O(n)
class Solution { public: int maximumGap(vector<int>& nums) { if(nums.size() < 2) return 0; int mx = INT_MIN, mn = INT_MAX, n = nums.size(); for(int i : nums){ mx = max(mx, i); mn = min(mn, i); } int size = (mx - mn) / n + 1; int bucket_nums = (mx - mn) /size + 1; vector<int> bucket_min(bucket_nums, INT_MAX); vector<int> bucket_max(bucket_nums, INT_MIN); set<int> s; for(int d : nums) { int idx = (d - mn) / size; bucket_min[idx] = min(bucket_min[idx], d); bucket_max[idx] = max(bucket_max[idx], d); s.insert(idx); } int pre = 0, res = 0; for (int i = 1; i < n; ++i) { if (!s.count(i)) continue; res = max(res, bucket_min[i] - bucket_max[pre]); pre = i; } return res; } };