zoukankan      html  css  js  c++  java
  • 2013 ACM/ICPC Asia Regional Online —— Warmup2

    HDU 4716  A Computer Graphics Problem 

    水题。略

     

    HDU 4717 The Moving Points

    题目:给出n个点的起始位置以及速度矢量,问任意一个时刻使得最远的两点的距离最小。

    分析:显然只有两点的话,答案满足三分性质。对于多个点,画个图分析一下,其实也满足三分性质。因此,先构造n*(n-1)/2个二次函数,于是三分枚举时间即可。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <stack>
    #include <queue>
    
    using namespace std;
    
    #define pb push_back
    #define mp make_pair
    #define eps 1e-6
    typedef long long ll;
    
    struct point {
        ll x, y, vx, vy;
    } p[350];
    
    struct func {
        ll a, b, c;
    } f[50000];
    int m, n;
    double anst, ansd;
    inline void makef(point a, point b) {
        f[m].a = (a.vx-b.vx)*(a.vx-b.vx)+(a.vy-b.vy)*(a.vy-b.vy);
        f[m].b = 2*((a.x-b.x)*(a.vx-b.vx)+(a.y-b.y)*(a.vy-b.vy));
        f[m++].c = (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    }
    inline double foo(int x, double t) {
        return f[x].a*t*t+f[x].b*t+f[x].c;
    }
    inline double getd(double t) {
        double ret = -1;
        for (int i = 0; i < m; ++i) {
            double tmp = foo(i,t);
            if (tmp > ret) ret = tmp;
        }
        return ret;
    }
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("sum.in", "r", stdin);
        // freopen("cf.out", "w", stdout);
    #endif
    
        int T;
        scanf("%d", &T);
        for (int ncase = 1; ncase <= T; ++ncase) {
            scanf("%d", &n);
            for (int i = 0; i < n; ++i)
                scanf("%I64d%I64d%I64d%I64d",&p[i].x, &p[i].y, &p[i].vx, &p[i].vy);
            m = 0;
            for (int i = 0; i < n-1; ++i)
                for (int j = i+1; j < n; ++j)
                    makef(p[i], p[j]);
            double low = .0, high = 1e120;
            while(high-low>eps) {
                double mid1 = (2*low+high)/3.0;
                double mid2 = (low+2*high)/3.0;
                double tmp1 = getd(mid1);
                double tmp2 = getd(mid2);
                if (tmp1-tmp2>eps) {
                    anst = mid2;
                    ansd = tmp2;
                    low = mid1;
                } else {
                    anst = mid1;
                    ansd = tmp1;
                    high = mid2;
                }
            }
            printf("Case #%d: %.2lf %.2lf
    ", ncase, anst, sqrt(ansd));
        }
    
        return 0;
    }
    

      

     

    HDU 4718 The LCIS on the Tree

    我用的是树链剖分+线段树来写,发现在求lca合并时很难维护,改天用lct水掉算了 >.<

    这题的简单版 hdu 3308 LCIS 线段树

    待补。

     

    HDU 4719  Oh My Holy FFF

    题目大意:给出n个数b1...bn,现在需要划分集合,每个集合的元素不能超过L个,并且要求第i个集合的最后一个元素now大于第i-1个集合的最后一个元素pre。每个集合的价值为:now*now-pre。题目目标是:求max{ sigma(所有集合价值) }

    分析:不难想出一个递推式:dp[i]表示当前i作为集合的最后一个元素的最优解。

    dp[i] = max{  dp[j] + b[i]*b[i]-b[j]  }。 0<=i-j<= L,b[j]<b[i]。

    注意到b[i]是不变的,于是转移方程可以写成:

    dp[i] = max{  b[i]*b[i]  + (dp[j] -b[j])  }。  0<=i-j<= L,b[j]<b[i]。

    如何在约束( 0<=i-j<= L,b[j]<b[i] ) 下,求出dp[j]-b[j]最大?

    这里可以用到单调队列,线段树维护一下即可。

    具体实现(代码)献上我队友的代码吧 = =。

    struct seg {
            int l,r;
            ll mx;
            int mid() {
                    return l+r>>1;
            };
    } tree[maxn<<2];
    void init_tree(int l,int r,int x)
    {
            tree[x].l=l,tree[x].r=r;
            tree[x].mx=-1;
            if(l==r)return;
            int mid=l+r>>1;
            init_tree(l,mid,lc(x));
            init_tree(mid+1,r,rc(x));
    }
    void insert(int pos,int x,ll num)
    {
            if(tree[x].l==tree[x].r) {
                    tree[x].mx=num;
                    return;
            }
            int mid=tree[x].mid();
            if(pos<=mid)insert(pos,lc(x),num);
            else insert(pos,rc(x),num);
            tree[x].mx=max(tree[lc(x)].mx,tree[rc(x)].mx);
    }
    ll query(int l,int r,int x)
    {
            if(l<=tree[x].l && tree[x].r<=r)
                    return tree[x].mx;
            int mid=tree[x].mid();
            ll res=-1;
            if(l<=mid)res=max(res,query(l,r,lc(x)));
            if(r>mid)res=max(res,query(l,r,rc(x)));
            return res;
    }
    deque<pair<ll,int> >q[maxn];
    int t,n,m,cas;
    ll a[maxn];
    int main()
    {
            cin>>t;
            while(t--) {
                    scanf("%d%d",&n,&m);
                    init_tree(0,100000,1);
                    for(int i=0; i<=100000; i++)
                            while(!q[i].empty())q[i].pop_front();
                    ll ans=-1;
                    for(int i=1; i<=n; i++)
                            scanf("%I64d",&a[i]);
                    for(int i=1; i<=n; i++) {
                            ll res=query(0,a[i]-1,1);
                            if (i <= m && res==-1)res=0;
                            if(res!=-1) {
                                    res+=a[i]*a[i];
                                    if(i==n)ans=res;
    
                                    while(!q[a[i]].empty() && q[a[i]].back().first<=res-a[i])
                                            q[a[i]].pop_back();
                                    q[a[i]].push_back(mp(res-a[i],i));
                                    if(q[a[i]].front().second==i)
                                            insert(a[i],1,q[a[i]].front().first);
                            }
    
    
                            if(i>m) {
                                    insert(a[i-m],1,-1);
                                    if(q[a[i-m]].size() && q[a[i-m]].front().second==i-m)
                                            q[a[i-m]].pop_front();
                                    if(!q[a[i-m]].empty())
                                            insert(a[i-m],1,q[a[i-m]].front().first);
                            }
                    }
                    if(ans!=-1)printf("Case #%d: %I64d
    ",++cas,ans);
                    else printf("Case #%d: No solution
    ",++cas);
            }
    }
    

      

     

    HDU 4720 Naive and Silly Muggles

    注意到不一定是外接圆,如果是钝角三角形时,最长边即为直径。

    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <string>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    #define debug puts("here")
    #define rep(i,n) for(int i=0;i<n;i++)
    #define rep1(i,n) for(int i=1;i<=n;i++)
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++)
    #define pb push_back
    #define RD(n) scanf("%d",&n)
    #define RD2(x,y) scanf("%d%d",&x,&y)
    #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w)
    #define All(vec) vec.begin(),vec.end()
    #define MP make_pair
    #define PII pair<int,int>
    #define PQ priority_queue
    #define cmax(x,y) x = max(x,y)
    #define cmin(x,y) x = min(x,y)
    #define Clear(x) memset(x,0,sizeof(x))
    /*
    
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    
    int size = 256 << 20; // 256MB
    char *p = (char*)malloc(size) + size;
    __asm__("movl %0, %%esp
    " :: "r"(p) );
    
    */
    
    char IN;
    bool NEG;
    inline void Int(int &x) {
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    inline void LL(ll &x) {
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    
    /******** program ********************/
    
    const double eps=1e-8;
    const double PI = acos(-1.0);
    
    double dis(double a,double b){
        return a*a+b*b;
    }
    
    int dcmp(double x){
        if(fabs(x)<eps)return 0;
        return x>0?1:-1;
    }
    
    
    double ox,oy,r;
    bool cc(double x1,double y1,double x2,double y2,double x3,double y3){
        ox = (x1+x2)/2,oy = (y1+y2)/2;
        r = dis(ox-x2,oy-y2);
        if( dcmp(dis(ox-x3,oy-y3)-r)<=0 )
            return true;
        return false;
    }
    
    void solve(){
        double x,y;
        cin>>x>>y;
        if(dcmp(dis(x-ox,y-oy)-r)>0)puts("Safe");
        else puts("Danger");
    }
    
    int main() {
    
    #ifndef ONLINE_JUDGE
        freopen("sum.in","r",stdin);
        //freopen("sum.out","w",stdout);
    #endif
    
        int Ncase = 0;
        int ncase;
        RD(ncase);
        double x1,x2,x3,y1,y2,y3;
        while(ncase--) {
            cin>>x1>>y1>>x2>>y2>>x3>>y3;
    
            printf("Case #%d: ",++Ncase);
            if(cc(x1,y1,x2,y2,x3,y3))
                solve();
            else if(cc(x2,y2,x3,y3,x1,y1))
                solve();
            else if(cc(x3,y3,x1,y1,x2,y2))
                solve();
            else{
                double k1=x2-x1,t1=y2-y1,k2=x3-x2,t2=y3-y2;
                double c1=(y2*y2+x2*x2-x1*x1-y1*y1)/2.0,c2=(y3*y3+x3*x3-x2*x2-y2*y2)/2.0;
                double a=(c1*t2-c2*t1)/(t2*k1-t1*k2),b=(c1*k2-c2*k1)/(t1*k2-k1*t2);
                double r=(a-x1)*(a-x1)+(b-y1)*(b-y1);
                cin>>x1>>y1;
                double d = dis(a-x1,b-y1);
    
                if(dcmp(d-r)>0)
                    puts("Safe");
                else
                    puts("Danger");
            }
        }
    
        return 0;
    }
    

      

     

    HDU 4721 Food and Productivity

    待补

    HDU 4722 Good Numbers

    数位DP

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <stack>
    #include <queue>
    
    using namespace std;
    
    #define pb push_back
    #define mp make_pair
    typedef long long ll;
    ll f[20], a, b;
    int num[20];
    ll getnum(ll x) {
        if (x == -1) return 0;
        if (x == 0) return 1;
        int len = 0;
        int tmp = 0, t = 0;
        while(x) {
            tmp += x % 10;
            num[len++] = x % 10;
            x /= 10;
        }
        tmp -= num[0];
        ll ret = 0;
        for (int l = len-1; l >= 1; --l)
            ret += num[l]*f[l];
        for (int i = 0; i <= num[0]; ++i)
            if ((tmp+i) % 10 == 0) t = 1;
        return ret+t;
    }
    int main() {
    
    #ifndef ONLINE_JUDGE
        freopen("sum.in","r",stdin);
        //freopen("sum.out","w",stdout);
    #endif
    
        f[0] = 0;
        f[1] = 1;
        for (int i = 2; i <= 19; ++i) f[i] = f[i-1]*10;
        int T;
        scanf("%d", &T);
        for (int ncase = 1; ncase <= T; ++ncase) {
            scanf("%I64d%I64d", &a, &b);
            printf("Case #%d: %I64d
    ",ncase,getnum(b)-getnum(a-1));
        }
        return 0;
    }
    

      

    HDU 4723 How Long Do You Have to Draw

    怎么我感觉这题不难,难道我打开的方式不对?可惜比赛时没看题。。。

    给出n个纵坐标为a的点,c1<c2<...<cn

    给出m个纵坐标为b的点,d1<d2<...<dm

    问如何对上下点进行连边,使得三角形最多,并且边不能相交。

    分析:对于下图进行分析讨论即可。

    如果c点已经到了最后,则:c点连剩下的d点

    如果d点已经到了最后,则:d点连剩下的c点

    如果c,d后面还有,有两种情况:

      1.为c1,d1,d2在c1,c2中线左边,则c1连d1,d后移

      2.为c1,d2,d3在c1,c2中线右边,则c1连d1,判断c1d3,c2d2的距离,根据那个更优移动哪个点即可。

    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <string>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    #define debug puts("here")
    #define rep(i,n) for(int i=0;i<n;i++)
    #define rep1(i,n) for(int i=1;i<=n;i++)
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++)
    #define pb push_back
    #define RD(n) scanf("%d",&n)
    #define RD2(x,y) scanf("%d%d",&x,&y)
    #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w)
    #define All(vec) vec.begin(),vec.end()
    #define MP make_pair
    #define PII pair<int,int>
    #define PQ priority_queue
    #define cmax(x,y) x = max(x,y)
    #define cmin(x,y) x = min(x,y)
    #define Clear(x) memset(x,0,sizeof(x))
    /*
    
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    
    int size = 256 << 20; // 256MB
    char *p = (char*)malloc(size) + size;
    __asm__("movl %0, %%esp
    " :: "r"(p) );
    
    */
    
    char IN;
    bool NEG;
    inline void Int(int &x){
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    inline void LL(ll &x){
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    
    /******** program ********************/
    
    const int MAXN = 1e5+5;
    
    double c[MAXN],d[MAXN],a,b;
    
    double dis(double x,double y){
        return sqrt(x*x+y*y);
    }
    double dis(double x1,double y1,double x2,double y2){
        return dis(x1-x2,y1-y2);
    }
    
    int main(){
    
    #ifndef ONLINE_JUDGE
        freopen("sum.in","r",stdin);
        //freopen("sum.out","w",stdout);
    #endif
    
        int ncase,n,m,Ncase = 0;
        RD(ncase);
        while(ncase--){
            printf("Case #%d: ",++Ncase);
            scanf("%lf%lf",&a,&b);
            RD2(n,m);
            rep1(i,n)
                scanf("%lf",&c[i]);
            rep1(i,m)
                scanf("%lf",&d[i]);
    
            double ans = 0;
            int x = 1 ,y = 1;
            while(x<=n&&y<=m){
                if( x==n ){
                    ans += dis(c[x],a,d[y],b);
                    y ++;
                }else if( y==m ){
                    ans += dis(c[x],a,d[y],b);
                    x ++;
                }else{
                    if(d[y+1]*2<=c[x]+c[x+1]){
                        ans += dis(c[x],a,d[y],b);
                        y ++;
                    }else{
                        ans += dis(c[x],a,d[y],b);
                        double tmp = dis(c[x],a,d[y+1],b);
                        double ret = dis(c[x+1],a,d[y],b);
                        if(ret<tmp)
                            x ++;
                        else y++;
                    }
                }
            }
            printf("%.2lf
    ",ans);
        }
    
        return 0;
    }
    

      

    HDU 4724 If You Know This,You Must Have NO GF

    待补

    HDU 4725 The Shortest Path in Nya Graph

     使用堆维护dijkstra的算法,每次从堆中取出一个节点,如果该节点所在的层没被标记,更新相邻两层,标记上(因为每次都从堆中去最小值,因此当前层的最优值必定是第一次访问时所得,进而更新其他的层)。至于边的松弛,跟普通的dijkstra一样。详细看代码。

    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <string>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    #define debug puts("here")
    #define rep(i,n) for(int i=0;i<n;i++)
    #define rep1(i,n) for(int i=1;i<=n;i++)
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++)
    #define pb push_back
    #define RD(n) scanf("%d",&n)
    #define RD2(x,y) scanf("%d%d",&x,&y)
    #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w)
    #define All(vec) vec.begin(),vec.end()
    #define MP make_pair
    #define PII pair<int,int>
    #define PQ priority_queue
    #define cmax(x,y) x = max(x,y)
    #define cmin(x,y) x = min(x,y)
    #define Clear(x) memset(x,0,sizeof(x))
    /*
    
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    
    int size = 256 << 20; // 256MB
    char *p = (char*)malloc(size) + size;
    __asm__("movl %0, %%esp
    " :: "r"(p) );
    
    */
    
    char IN;
    bool NEG;
    inline void Int(int &x){
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    inline void LL(ll &x){
        NEG = 0;
        while(!isdigit(IN=getchar()))
            if(IN=='-')NEG = 1;
        x = IN-'0';
        while(isdigit(IN=getchar()))
            x = x*10+IN-'0';
        if(NEG)x = -x;
    }
    
    /******** program ********************/
    
    const int MAXN = 1e5+5;
    const int INF = 1e9+7;
    
    struct Edge{
        int y,cost,next;
    }edge[MAXN<<1];
    
    int po[MAXN],tol;
    vector<int> vec[MAXN];
    int la[MAXN],n,per,m;
    int dis[MAXN];
    bool use[MAXN];
    bool ok[MAXN];
    
    struct node{
        int x,cost;
        friend bool operator < (node a,node b){
            return a.cost>b.cost;
        }
        node(){}
        node(int _x,int _cost):x(_x),cost(_cost){}
    };
    
    int dijkstra(){
        priority_queue<node> q;
        Clear(use);
        rep1(i,n)dis[i] = INF;
        q.push(node(1,0));
        dis[1] = 0;
        Clear(ok);
        while(!q.empty()){
            node p = q.top();
            q.pop();
            int x = p.x;
            if(use[x])continue;
            use[x] = 1;
            if(x==n&&dis[n]<INF)break;
    
            if(!ok[la[x]]){
                    ok[la[x]] = 1;
                    int now = la[x]-1;
                    if(now)
                        foreach(i,vec[now]){
                            int y = vec[now][i];
                            if(!use[y]&&dis[x]+per<dis[y]){
                                dis[y] = dis[x]+per;
                                q.push(node(y,dis[y]));
                            }
                        }
                    now += 2;
                    if(now<=n)
                        foreach(i,vec[now]){
                            int y = vec[now][i];
                            if(!use[y]&&dis[x]+per<dis[y]){
                                dis[y] = dis[x]+per;
                                q.push(node(y,dis[y]));
                            }
                        }
            }
            for(int i=po[x];i;i=edge[i].next){
                int y = edge[i].y;
                int tmp = edge[i].cost+dis[x];
                if(!use[y]&&tmp<dis[y]){
                    dis[y] = tmp;
                    q.push(node(y,dis[y]));
                }
            }
        }
    
        return dis[n];
    }
    
    inline void add(int x,int y,int cost){
        edge[++tol].y = y;
        edge[tol].cost = cost;
        edge[tol].next = po[x];
        po[x] = tol;
    }
    
    int main(){
    
    #ifndef ONLINE_JUDGE
        freopen("cf.in","r",stdin);
        //freopen("sum.out","w",stdout);
    #endif
    
        int x,y,c,ncase,Ncase = 0;
        RD(ncase);
        while(ncase--){
            printf("Case #%d: ",++Ncase);
            RD3(n,m,per);
            rep1(i,n)
                vec[i].clear();
            rep1(i,n){
                RD(la[i]);
                vec[la[i]].pb(i);
            }
    
            Clear(po);
            tol = 0;
            while(m--){
                RD3(x,y,c);
                add(x,y,c);
                add(y,x,c);
            }
    
            int ans = dijkstra();
            printf("%d
    ",ans==INF?-1:ans);
        }
    
        return 0;
    }
    

      

    HDU 4726 Kia's Calculation

    贪心。第一位想清楚了,后面的直接贪心。略

    HDU 4727 The Number Off of FFF

    水题。注意全对时输出1。略

     

  • 相关阅读:
    linux配置ssh互信
    查看LINUX进程内存占用情况
    RSync实现文件备份同步详解
    rsync同步完整配置
    Linux下利用rsync实现多服务器文件同步
    Linux下的split 命令(将一个大文件根据行数平均分成若干个小文件)
    Linux大文件分割split和合并cat使用方法
    Linux计划任务入门详解
    一步一步理解最大熵模型
    一步一步理解word2Vec
  • 原文地址:https://www.cnblogs.com/yejinru/p/3315265.html
Copyright © 2011-2022 走看看