zoukankan      html  css  js  c++  java
  • poj 1745 Divisibility

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible
    

    大意:
      输入n,k,然后有n个数,可以在n个数之间随意添加加号或减号判断最后的值能不能别k整除。

    定义数组dp[i][j]表示第i个数对k取余为j,(a[1]%k+k)%k为a[1]对k取余的值,所以定义dp[i][(a[1]%k+k)%k]=true;令i从2~n,余数j从0~k-1,判断a[i-1][j]求出a[i-1]余数j,求出j+a[i]或j-a[i]对k取余的值,定义a[i][((j(+或-)a[i])%k+k)%k]=true,若dp[n][0]为真,表示a[n]加上前面的余数对k取余为0。
     
     1 #include<cstdio>
     2 #include<string.h>
     3 bool dp[10010][110];
     4 int main()
     5 {
     6     int n,k,i,j,a[10010];
     7     while(scanf("%d %d",&n,&k)!=EOF)
     8     {
     9         memset(dp,false,sizeof(dp));
    10         for(i = 1 ; i <= n ; i++)
    11         {
    12             scanf("%d",&a[i]);
    13         }
    14         dp[1][(a[1]%k+k)%k]=true;            //(a[1]%k+k)%k为a[1]对k取余的值(加k为了避免取余结果为负值) 
    15         for(i = 2 ; i <= n ; i++)
    16         {
    17             for(j = 0 ; j < k ; j++)
    18             {
    19                 if(dp[i-1][j])                //令a[i-1]对k取余的值加上a[i]再对k取余 
    20                 {
    21                     dp[i][((j+a[i])%k+k)%k]=true;
    22                     dp[i][((j-a[i])%k+k)%k]=true;
    23                 }
    24             }
    25         }
    26         if(dp[n][0])                        //为真时说明a[n]加前面的余数对k取余为0 
    27         {
    28             printf("Divisible
    ");
    29         }
    30         else
    31         {
    32             printf("Not divisible
    ");
    33         }        
    34      } 
    35     return 0;
    36 }
  • 相关阅读:

    tomcat 和jboss区别
    python好文章
    CUBRID学习笔记 34 net参数化查询 cubrid教程示例
    CUBRID学习笔记 33 net事务 cubrid教程示例
    CUBRID学习笔记 32 对net的datatable的支持 cubrid教程
    CUBRID学习笔记 31 通过select创建表
    CUBRID学习笔记 30 复制表结构 cubrid教程
    CUBRID学习笔记 29 web管理中文语言文件 CUBRID教程
    CUBRID学习笔记 28 执行sql脚本文件
  • 原文地址:https://www.cnblogs.com/yexiaozi/p/5753487.html
Copyright © 2011-2022 走看看