zoukankan      html  css  js  c++  java
  • [LeetCode]Interleaving String关于遍历和动态规划

    晚上做了一下leetcode的Interleaving String,觉得特别适合比较树的遍历和动态规划的效率比较。

    题目如下:

    Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

    For example,
    Given:
    s1 = "aabcc",
    s2 = "dbbca",

    When s3 = "aadbbcbcac", return true.
    When s3 = "aadbbbaccc", return false.

    第一反应很适合用递归:

        bool isInterleave_res(string s1, string s2, string s3) {
            if ((s1.empty() && s2.empty() && s3.empty()) || 
                (!s1.empty() && !s3.empty() && s3[0] == s1[0] && isInterleave_res(s1.substr(1, s1.length()-1), s2, s3.substr(1, s3.length()-1))) || 
                (!s2.empty() && !s3.empty() && s3[0] == s2[0] && isInterleave_res(s1, s2.substr(1, s2.length()-1), s3.substr(1, s3.length()-1))) )
            {
                return true;
            }
            return false;
        }

    这样本质上就是树的深度优先遍历,但是效率就比较低,很多节点会多次计算到,果然TLE,用例是:

    s1 = "bbbbbabbbbabaababaaaabbababbaaabbabbaaabaaaaababbbababbbbbabbbbababbabaabababbbaabababababbbaaababaa";
    s2 = "babaaaabbababbbabbbbaabaabbaabbbbaabaaabaababaaaabaaabbaaabaaaabaabaabbbbbbbbbbbabaaabbababbabbabaab";
    s3 = "babbbabbbaaabbababbbbababaabbabaabaaabbbbabbbaaabbbaaaaabbbbaabbaaabababbaaaaaabababbababaababbababbbababbbbaaaabaabbabbaaaaabbabbaaaabbbaabaaabaababaababbaaabbbbbabbbbaabbabaabbbbabaaabbababbabbabbab";

    这题很容易也想到用动态规划,设置表dp,dp[i][j]代表s1的前i个和s2的前j个能和s3的前i+j个匹配上,则根据dp[i][j]就可以推出dp[i+1][j]和dp[i][j+1]。返回dp最右下角的值。

    例如题目中的例子1:s3 = "aadbbcbcac"

    例子2:s3 = "aadbbcbccc"

    class Solution {
    public:
        bool isInterleave(string s1, string s2, string s3) {
            int len1 = s1.length(), len2 = s2.length(), len3=s3.length();
            if (len1+len2!=len3)
            {
                return false;
            }
            vector<vector<bool>> dp(len1+1, vector<bool>(len2+1, false));
            dp[0][0] = true;
            for (int i = -1; i < len1; ++i)
            {
                for (int j = -1;  j < len2; ++j)
                {
                    if (dp[i+1][j+1]==true)
                    {
                        if (i+1 < len1 && i+j+2 < len3 && s1[i+1]==s3[i+j+2])
                        {
                            dp[i+2][j+1] = true;
                        }
                        if (j+1 < len2 && i+j+2 < len3 && s2[j+1]==s3[i+j+2])
                        {
                            dp[i+1][j+2] = true;
                        }
                    }
                }
            }
            return dp[len1][len2];
        }
    };

    这样代码就通过了。

    仔细观察,这题用遍历就是一棵二叉树的深度优先遍历,而这棵树对应dp的表格就是(i, j)的左节点就是(i+1, j)右节点是(i, j+1),所以(i+1, j)的右节点和(i, j+1)的左节点是同样的(i+1, j+1),进一步加剧了遍历树的重复。

    但是观察dp表,其实也浪费了很多,如果s1长度为m而s2长度为n,DP的时间复杂度和空间复杂度都为m*n(空间复杂度可以优化为2×m或者2×n,因为只和上一行相关),但是其实我们关心的只是其中为T的点,最好情况下其实只需要m+n。

    我们可以将树的遍历(只走了为T的点)和DP表结合起来,可以理解为将DP表用稀释矩阵的形式保存,只保存T的点,而走过的T点就不再遍历,这样在m和n很大的情况下应该有较大提升,代码如下:

    class Solution {
    public:
        bool isInterleave(string s1, string s2, string s3) {
            int len1 = s1.length(), len2 = s2.length(), len3=s3.length();
            if (len1+len2!=len3)
            {
                return false;
            }
            stack<pair<int, int>> node;
            set<pair<int, int>> passed;
            node.push(pair<int, int>(-1, -1));
            pair<int, int> last_node;
            int count = 0;
            while (!node.empty())
            {
                count++;
                int i = node.top().first;
                int j = node.top().second;
                passed.insert(pair<int, int>(i, j));
                if (i == len1-1 && j == len2-1)
                {
                    return true;
                }
                node.pop();
                if (i+1 < len1 && i+j+2 < len3 && s1[i+1]==s3[i+j+2] && passed.find(pair<int, int>(i+1, j)) == passed.end())
                {
                    node.push(pair<int, int>(i+1, j));
                }
                if (j+1 < len2 && i+j+2 < len3 && s2[j+1]==s3[i+j+2] && passed.find(pair<int, int>(i, j+1)) == passed.end())
                {
                    node.push(pair<int, int>(i, j+1));
                }
            }
            return false;
        }
    };

    三种方法,第一种,Time Limit Exceeded;第二种16ms通过所有测试用例,第三种8ms

  • 相关阅读:
    两种三维点云密度聚类方法的研究与对比
    C++ string和char char*的转换
    七大排序算法总结
    map下标操作和insert区别
    c++ map 使用自定义结构做关键字
    BagFromImage安装与使用
    安装ipython notebook
    c++基本知识
    Python爬虫第一集
    91. Decode Ways
  • 原文地址:https://www.cnblogs.com/yezhangxiang/p/3952659.html
Copyright © 2011-2022 走看看