zoukankan      html  css  js  c++  java
  • [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage



    Problem Description
    Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent. 

    Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
     

    Input
    The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.
    Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n. 
     

    Output
    For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No". 
     

    Sample Input
    3 USDollar BritishPound FrenchFranc 3 USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 3 USDollar BritishPound FrenchFranc 6 USDollar 0.5 BritishPound USDollar 4.9 FrenchFranc BritishPound 10.0 FrenchFranc BritishPound 1.99 USDollar FrenchFranc 0.09 BritishPound FrenchFranc 0.19 USDollar 0
     

    Sample Output
    Case 1: Yes Case 2: No
     

    Source


    解题思路:

    方法1:

    一种货币经过兑换其他的货币,经过几轮兑换。终于回到该货币,使其价值变大,这就是“套利”。採用bellman_ford算法。不是求对短路,求最大获利。在bellman算法上修改。

    推断是否含有正权回路。

    代码:

    #include <iostream>
    #include <string.h>
    using namespace std;
    const int maxn=35;
    double dis[maxn];
    string str[maxn];
    int nodeNum,edgeNum;
    
    struct Edge
    {
        int s,e;
        double w;
    }edge[maxn*maxn];
    
    bool bellman_ford(int start)
    {
        for(int i=1;i<=nodeNum;i++)
            dis[i]=0;//修改1
        dis[start]=1;
        bool ok;
        for(int i=1;i<=nodeNum-1;i++)
        {
            ok=0;
            for(int j=1;j<=edgeNum;j++)
            {
                if(dis[edge[j].s]*edge[j].w>dis[edge[j].e])//修改2
                {
                    dis[edge[j].e]=dis[edge[j].s]*edge[j].w;
                    ok=1;
                }
            }
            if(!ok)
                break;
        }
        for(int i=1;i<=edgeNum;i++)
            if(dis[edge[i].s]*edge[i].w>dis[edge[i].e])
            return true;
        return false;
    }
    
    int main()
    {
        int c=1;
        while(cin>>nodeNum&&nodeNum)
        {
            for(int i=1;i<=nodeNum;i++)
                cin>>str[i];
            cin>>edgeNum;
            string from,to;
            double w;
            for(int i=1;i<=edgeNum;i++)
            {
                cin>>from>>w>>to;
                int j,k;
                for(j=1;j<=nodeNum;j++)
                    if(from==str[j])
                    break;
                for(k=1;k<=nodeNum;k++)
                    if(to==str[k])
                    break;
                edge[i].s=j;
                edge[i].e=k;
                edge[i].w=w;
            }
            if(bellman_ford(1))
                cout<<"Case "<<c++<<": Yes"<<endl;
            else
                cout<<"Case "<<c++<<": No"<<endl;
        }
        return 0;
    }
    
    方法二:

    建立图,邻接矩阵,求随意两条边之间的最短路,假设dis[i][i]>1 的话。说明存在正权回路。代码中使用到了map, 字符串到整型编号的映射

    代码:

    #include <iostream>
    #include <map>
    #include <string.h>
    using namespace std;
    const int maxn=40;
    string str[maxn];
    double mp[maxn][maxn];
    int nodeNum,edgeNum;
    
    void floyed()
    {
        for(int k=1;k<=nodeNum;k++)
            for(int i=1;i<=nodeNum;i++)
                for(int j=1;j<=nodeNum;j++)
                {
                    if(mp[i][j]<mp[i][k]*mp[k][j])
                        mp[i][j]=mp[i][k]*mp[k][j];
                }
    }
    
    int main()
    {
        int c=1;
        while(cin>>nodeNum&&nodeNum)
        {
            map<string,int>st;
            for(int i=1;i<=nodeNum;i++)
            {
                cin>>str[i];
                st[str[i]]=i;
            }
            for(int i=1;i<=nodeNum;i++)
                for(int j=1;j<=nodeNum;j++)
            {
                if(i==j)
                    mp[i][j]=1;
                else
                    mp[i][j]=0;
            }
            cin>>edgeNum;
            string from,to;double w;
            for(int i=1;i<=edgeNum;i++)
            {
                cin>>from>>w>>to;
                mp[st[from]][st[to]]=w;
            }
            floyed();
            bool ok=0;
            for(int i=1;i<=nodeNum;i++)
                if(mp[i][i]>1)
                 ok=1;
            if(ok)
                cout<<"Case "<<c++<<": Yes"<<endl;
            else
                cout<<"Case "<<c++<<": No"<<endl;
        }
        return 0;
    }
    




  • 相关阅读:
    [ jquery 选择器 :hidden ] 此方法选取匹配所有不可见元素,或者type为hidden的元素
    剑指 Offer 03. 数组中重复的数字 哈希
    LeetCode 1736. 替换隐藏数字得到的最晚时间 贪心
    Leetcode 1552. 两球之间的磁力 二分
    Leetcode 88. 合并两个有序数组 双指针
    LeetCode 1744. 你能在你最喜欢的那天吃到你最喜欢的糖果吗?
    LeetCode 1743. 相邻元素对还原数组 哈希
    LeetCode 1745. 回文串分割 IV dp
    剑指 Offer 47. 礼物的最大价值 dp
    剑指 Offer 33. 二叉搜索树的后序遍历序列 树的遍历
  • 原文地址:https://www.cnblogs.com/yfceshi/p/7214668.html
Copyright © 2011-2022 走看看