zoukankan      html  css  js  c++  java
  • Cartographer源码阅读(2):Node和MapBuilder对象

      上文提到特别注意map_builder_bridge_.AddTrajectory(x,x),查看其中的代码。两点:

      首先是map_builder_.AddTrajectoryBuilder(...),调用了map_builder_对象的方法。其次是sensor_bridges_键值对的赋值。

    int MapBuilderBridge::AddTrajectory(const std::unordered_set<std::string>& expected_sensor_ids,  const TrajectoryOptions& trajectory_options)
    {
         const int trajectory_id = map_builder_.AddTrajectoryBuilder(expected_sensor_ids, trajectory_options.trajectory_builder_options,                   
                      ::std::bind(&MapBuilderBridge::OnLocalSlamResult, this,
                      ::std::placeholders::_1, ::std::placeholders::_2,
                      ::std::placeholders::_3, ::std::placeholders::_4,
                      ::std::placeholders::_5));
         LOG(INFO) << "Added trajectory with ID '" << trajectory_id << "'.";
     
         // Make sure there is no trajectory with 'trajectory_id' yet.
         CHECK_EQ(sensor_bridges_.count(trajectory_id), 0);
         sensor_bridges_[trajectory_id] = cartographer::common::make_unique<SensorBridge>(
              trajectory_options.num_subdivisions_per_laser_scan,
              trajectory_options.tracking_frame,
              node_options_.lookup_transform_timeout_sec, tf_buffer_,
              map_builder_.GetTrajectoryBuilder(trajectory_id));
         auto emplace_result =  trajectory_options_.emplace(trajectory_id, trajectory_options);
         CHECK(emplace_result.second == true);
         return trajectory_id;
    }
    

      其中map_builder_.AddTrajectoryBuilder(...)是Cartographer项目中的代码了。

    int MapBuilder::AddTrajectoryBuilder( const std::unordered_set<std::string>& expected_sensor_ids, const proto::TrajectoryBuilderOptions& trajectory_options,
     LocalSlamResultCallback local_slam_result_callback) 
    {
        const int trajectory_id = trajectory_builders_.size();//生成trajectory_id
        if (options_.use_trajectory_builder_3d()) 
        {
            CHECK(trajectory_options.has_trajectory_builder_3d_options());
            trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>(
                &sensor_collator_, trajectory_id, expected_sensor_ids,
                common::make_unique<mapping::GlobalTrajectoryBuilder<
                    mapping_3d::LocalTrajectoryBuilder,
                    mapping_3d::proto::LocalTrajectoryBuilderOptions,
                    mapping_3d::PoseGraph>>(
                    trajectory_options.trajectory_builder_3d_options(),
                    trajectory_id, pose_graph_3d_.get(),
                    local_slam_result_callback)));//注意此处的push_back()方法
        }
        else
        {
             CHECK(trajectory_options.has_trajectory_builder_2d_options());
             trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>(
                &sensor_collator_, trajectory_id, expected_sensor_ids,
                common::make_unique<mapping::GlobalTrajectoryBuilder<
                    mapping_2d::LocalTrajectoryBuilder,
                    mapping_2d::proto::LocalTrajectoryBuilderOptions,
                    mapping_2d::PoseGraph>>(
                    trajectory_options.trajectory_builder_2d_options(),
                    trajectory_id, pose_graph_2d_.get(),
                    local_slam_result_callback)));//注意此处的push_back()方法
        }
        if (trajectory_options.pure_localization()) 
        {
             constexpr int kSubmapsToKeep = 3;
             pose_graph_->AddTrimmer(common::make_unique<PureLocalizationTrimmer>(trajectory_id, kSubmapsToKeep));
        }
        if (trajectory_options.has_initial_trajectory_pose())
        {
            const auto& initial_trajectory_pose = trajectory_options.initial_trajectory_pose();
            pose_graph_->SetInitialTrajectoryPose(trajectory_id, initial_trajectory_pose.to_trajectory_id(),
            transform::ToRigid3(initial_trajectory_pose.relative_pose()), common::FromUniversal(initial_trajectory_pose.timestamp()));
        }
        return trajectory_id;
    }
    

      注意,trajectory_builders_是根据trajectory_id添加的。以后调用的时候根据trajectory_id调用。

      2D/3D区分:同时可以看到,这里对2D和3D情况作了区分,根据options_.use_trajectory_builder_3d()确定使用的类型。

      在ROS的主循环运行过程中,会不断处理传感器传入的数据。

      以IMU数据为例,auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id),根据trajectory_id获取sensor_bridge_ptr。注意这里因为是订阅的其它ROS主题(Topic),所以sensor_id参数是从其他主题传入的。(即当前程序内部有一套主题名称的字符串,订阅了外部主题也有一套名称字符串表示。这样两者通过同样的名称字符串建立了关系)

    void Node::HandleImuMessage(const int trajectory_id, const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg)
    {
      carto::common::MutexLocker lock(&mutex_);
      if (!sensor_samplers_.at(trajectory_id).imu_sampler.Pulse()) 
      {
            return;
      }
      auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id);
      auto imu_data_ptr = sensor_bridge_ptr->ToImuData(msg);
      if (imu_data_ptr != nullptr) 
      {
            extrapolators_.at(trajectory_id).AddImuData(*imu_data_ptr);
      }
      sensor_bridge_ptr->HandleImuMessage(sensor_id, msg);
    }
    

      最后调用了sensor_bridge_ptr->HandleImuMessage(sensor_id, msg);的代码。这里又通过trajectory_builder_调用了AddSensorData方法,由于之前做为参数传入的是CollatedTrajectoryBuilder,所以实际调用的是CollatedTrajectoryBuilder的AddSensorData方法。

    void SensorBridge::HandleImuMessage(const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg) 
    {
         std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg);
         if (imu_data != nullptr) 
        {
                trajectory_builder_->AddSensorData( sensor_id, cartographer::sensor::ImuData{imu_data->time, imu_data->linear_acceleration, imu_data->angular_velocity});
        }
    }
    

      SensorBridge类实现代码,消息转换函数查看msg_conversion.cc文件:

      1 SensorBridge::SensorBridge(
      2     const int num_subdivisions_per_laser_scan,
      3     const std::string& tracking_frame,
      4     const double lookup_transform_timeout_sec, tf2_ros::Buffer* const tf_buffer,
      5     carto::mapping::TrajectoryBuilderInterface* const trajectory_builder)
      6     : num_subdivisions_per_laser_scan_(num_subdivisions_per_laser_scan),
      7       tf_bridge_(tracking_frame, lookup_transform_timeout_sec, tf_buffer),
      8       trajectory_builder_(trajectory_builder) {}
      9 
     10 std::unique_ptr<::cartographer::sensor::OdometryData>
     11 SensorBridge::ToOdometryData(const nav_msgs::Odometry::ConstPtr& msg) {
     12   const carto::common::Time time = FromRos(msg->header.stamp);
     13   const auto sensor_to_tracking = tf_bridge_.LookupToTracking(
     14       time, CheckNoLeadingSlash(msg->child_frame_id));
     15   if (sensor_to_tracking == nullptr) {
     16     return nullptr;
     17   }
     18   return ::cartographer::common::make_unique<
     19       ::cartographer::sensor::OdometryData>(
     20       ::cartographer::sensor::OdometryData{
     21           time, ToRigid3d(msg->pose.pose) * sensor_to_tracking->inverse()});
     22 }
     23 
     24 void SensorBridge::HandleOdometryMessage(
     25     const std::string& sensor_id, const nav_msgs::Odometry::ConstPtr& msg) {
     26   std::unique_ptr<::cartographer::sensor::OdometryData> odometry_data =
     27       ToOdometryData(msg);
     28   if (odometry_data != nullptr) {
     29     trajectory_builder_->AddSensorData(
     30         sensor_id, cartographer::sensor::OdometryData{odometry_data->time,
     31                                                       odometry_data->pose});
     32   }
     33 }
     34 
     35 std::unique_ptr<::cartographer::sensor::ImuData> SensorBridge::ToImuData(
     36     const sensor_msgs::Imu::ConstPtr& msg) {
     37   CHECK_NE(msg->linear_acceleration_covariance[0], -1)
     38       << "Your IMU data claims to not contain linear acceleration measurements "
     39          "by setting linear_acceleration_covariance[0] to -1. Cartographer "
     40          "requires this data to work. See "
     41          "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html.";
     42   CHECK_NE(msg->angular_velocity_covariance[0], -1)
     43       << "Your IMU data claims to not contain angular velocity measurements "
     44          "by setting angular_velocity_covariance[0] to -1. Cartographer "
     45          "requires this data to work. See "
     46          "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html.";
     47 
     48   const carto::common::Time time = FromRos(msg->header.stamp);
     49   const auto sensor_to_tracking = tf_bridge_.LookupToTracking(
     50       time, CheckNoLeadingSlash(msg->header.frame_id));
     51   if (sensor_to_tracking == nullptr) {
     52     return nullptr;
     53   }
     54   CHECK(sensor_to_tracking->translation().norm() < 1e-5)
     55       << "The IMU frame must be colocated with the tracking frame. "
     56          "Transforming linear acceleration into the tracking frame will "
     57          "otherwise be imprecise.";
     58   return ::cartographer::common::make_unique<::cartographer::sensor::ImuData>(
     59       ::cartographer::sensor::ImuData{
     60           time,
     61           sensor_to_tracking->rotation() * ToEigen(msg->linear_acceleration),
     62           sensor_to_tracking->rotation() * ToEigen(msg->angular_velocity)});
     63 }
     64 
     65 void SensorBridge::HandleImuMessage(const std::string& sensor_id,
     66                                     const sensor_msgs::Imu::ConstPtr& msg) {
     67   std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg);
     68   if (imu_data != nullptr) {
     69     trajectory_builder_->AddSensorData(
     70         sensor_id, cartographer::sensor::ImuData{imu_data->time,
     71                                                  imu_data->linear_acceleration,
     72                                                  imu_data->angular_velocity});
     73   }
     74 }
     75 
     76 void SensorBridge::HandleLaserScanMessage(
     77     const std::string& sensor_id, const sensor_msgs::LaserScan::ConstPtr& msg) {
     78   ::cartographer::sensor::PointCloudWithIntensities point_cloud;
     79   ::cartographer::common::Time time;
     80   std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg);
     81   HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud);
     82 }
     83 
     84 void SensorBridge::HandleMultiEchoLaserScanMessage(
     85     const std::string& sensor_id,
     86     const sensor_msgs::MultiEchoLaserScan::ConstPtr& msg) {
     87   ::cartographer::sensor::PointCloudWithIntensities point_cloud;
     88   ::cartographer::common::Time time;
     89   std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg);
     90   HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud);
     91 }
     92 
     93 void SensorBridge::HandlePointCloud2Message(
     94     const std::string& sensor_id,
     95     const sensor_msgs::PointCloud2::ConstPtr& msg) {
     96   pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud;
     97   pcl::fromROSMsg(*msg, pcl_point_cloud);
     98   carto::sensor::TimedPointCloud point_cloud;
     99   for (const auto& point : pcl_point_cloud) {
    100     point_cloud.emplace_back(point.x, point.y, point.z, 0.f);
    101   }
    102   HandleRangefinder(sensor_id, FromRos(msg->header.stamp), msg->header.frame_id,
    103                     point_cloud);
    104 }
    105 
    106 const TfBridge& SensorBridge::tf_bridge() const { return tf_bridge_; }
    107 
    108 void SensorBridge::HandleLaserScan(
    109     const std::string& sensor_id, const carto::common::Time time,
    110     const std::string& frame_id,
    111     const carto::sensor::PointCloudWithIntensities& points) {
    112   CHECK_LE(points.points.back()[3], 0);
    113   // TODO(gaschler): Use per-point time instead of subdivisions.
    114   for (int i = 0; i != num_subdivisions_per_laser_scan_; ++i) {
    115     const size_t start_index =
    116         points.points.size() * i / num_subdivisions_per_laser_scan_;
    117     const size_t end_index =
    118         points.points.size() * (i + 1) / num_subdivisions_per_laser_scan_;
    119     carto::sensor::TimedPointCloud subdivision(
    120         points.points.begin() + start_index, points.points.begin() + end_index);
    121     if (start_index == end_index) {
    122       continue;
    123     }
    124     const double time_to_subdivision_end = subdivision.back()[3];
    125     // `subdivision_time` is the end of the measurement so sensor::Collator will
    126     // send all other sensor data first.
    127     const carto::common::Time subdivision_time =
    128         time + carto::common::FromSeconds(time_to_subdivision_end);
    129     for (auto& point : subdivision) {
    130       point[3] -= time_to_subdivision_end;
    131     }
    132     CHECK_EQ(subdivision.back()[3], 0);
    133     HandleRangefinder(sensor_id, subdivision_time, frame_id, subdivision);
    134   }
    135 }
    136 
    137 void SensorBridge::HandleRangefinder(
    138     const std::string& sensor_id, const carto::common::Time time,
    139     const std::string& frame_id, const carto::sensor::TimedPointCloud& ranges) {
    140   const auto sensor_to_tracking =
    141       tf_bridge_.LookupToTracking(time, CheckNoLeadingSlash(frame_id));
    142   if (sensor_to_tracking != nullptr) {
    143     trajectory_builder_->AddSensorData(
    144         sensor_id, cartographer::sensor::TimedPointCloudData{
    145                        time, sensor_to_tracking->translation().cast<float>(),
    146                        carto::sensor::TransformTimedPointCloud(
    147                            ranges, sensor_to_tracking->cast<float>())});
    148   }
    149 }
    SensorBridge
     1 ToPointCloudWithIntensities(const sensor_msgs::PointCloud2& message) {
     2   PointCloudWithIntensities point_cloud;
     3   // We check for intensity field here to avoid run-time warnings if we pass in
     4   // a PointCloud2 without intensity.
     5   if (PointCloud2HasField(message, "intensity")) {
     6     pcl::PointCloud<pcl::PointXYZI> pcl_point_cloud;
     7     pcl::fromROSMsg(message, pcl_point_cloud);
     8     for (const auto& point : pcl_point_cloud) {
     9       point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f);
    10       point_cloud.intensities.push_back(point.intensity);
    11     }
    12   } else {
    13     pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud;
    14     pcl::fromROSMsg(message, pcl_point_cloud);
    15 
    16     // If we don't have an intensity field, just copy XYZ and fill in
    17     // 1.0.
    18     for (const auto& point : pcl_point_cloud) {
    19       point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f);
    20       point_cloud.intensities.push_back(1.0);
    21     }
    22   }
    23   return std::make_tuple(point_cloud, FromRos(message.header.stamp));
    24 }
    msg_conversion.cc

      查看CollatedTrajectoryBuilder的AddSensorData方法,在CollatedTrajectoryBuilder的头文件中,包括4个覆写的AddSensorData(x,x)方法,方法中通过sensor::MakeDispatchable转换为Dispatchable<DataType>类型。

     void AddSensorData(const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override
     {
           AddSensorData(sensor::MakeDispatchable(sensor_id, timed_point_cloud_data));
     }
    
     void AddSensorData(const std::string& sensor_id,  const sensor::ImuData& imu_data) override
     {
           AddSensorData(sensor::MakeDispatchable(sensor_id, imu_data));
     }
    
      void AddSensorData(const std::string& sensor_id,  const sensor::OdometryData& odometry_data) override 
    {
          AddSensorData(sensor::MakeDispatchable(sensor_id, odometry_data));
    }
    
      void AddSensorData(const std::string& sensor_id, const sensor::FixedFramePoseData& fixed_frame_pose_data) override 
    {
         AddSensorData(sensor::MakeDispatchable(sensor_id, fixed_frame_pose_data));
    }
    

      最终定位到了sensor_collator_对象的方法。

    void CollatedTrajectoryBuilder::AddSensorData( std::unique_ptr<sensor::Data> data) 
    {
          sensor_collator_->AddSensorData(trajectory_id_, std::move(data));
    }
    

      


      查看几个类CollatedTrajectoryBuilder,mapping::GlobalTrajectoryBuilder

    CollatedTrajectoryBuilder::CollatedTrajectoryBuilder(sensor::Collator* const sensor_collator, const int trajectory_id,  
               const std::unordered_set<std::string>& expected_sensor_ids, std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder)
        : sensor_collator_(sensor_collator),
          trajectory_id_(trajectory_id),
          wrapped_trajectory_builder_(std::move(wrapped_trajectory_builder)),
          last_logging_time_(std::chrono::steady_clock::now())
    {
          sensor_collator_->AddTrajectory(trajectory_id, expected_sensor_ids, [this](const std::string& sensor_id, std::unique_ptr<sensor::Data> data) 
         {HandleCollatedSensorData(sensor_id, std::move(data));});
    }
    

      mapping::GlobalTrajectoryBuilder构造函数

    GlobalTrajectoryBuilder(const LocalTrajectoryBuilderOptions& options, const int trajectory_id, 
    PoseGraph* const pose_graph, const LocalSlamResultCallback& local_slam_result_callback)
          : trajectory_id_(trajectory_id), pose_graph_(pose_graph),
            local_trajectory_builder_(options), local_slam_result_callback_(local_slam_result_callback) 
    {}
    

      注意这里的继承关系:

        class CollatedTrajectoryBuilder : public TrajectoryBuilderInterface

        class GlobalTrajectoryBuilder : public mapping::TrajectoryBuilderInterface

      在mapping_2d和mapping_3d两个命名空间下分别存在2个local_trajectory_builder_类,实现了局部的扫描匹配和子图构建。代码在cartographercartographerinternal文件夹下。

      另外一个重要的Node类变量是extrapolators_,该对象在Node类的处理Odometry和IMU数据时都有用到,作用是位姿推算。在文一种Node::AddTrajectory方法中调用了AddExtrapolator(trajectory_id, options);

    1 std::map<int, ::cartographer::mapping::PoseExtrapolator> extrapolators_;
    void Node::AddExtrapolator(const int trajectory_id, const TrajectoryOptions& options)
    {
      constexpr double kExtrapolationEstimationTimeSec = 0.001;  // 1 ms
      CHECK(extrapolators_.count(trajectory_id) == 0);
      const double gravity_time_constant =
          node_options_.map_builder_options.use_trajectory_builder_3d()
              ? options.trajectory_builder_options.trajectory_builder_3d_options()
                    .imu_gravity_time_constant()
              : options.trajectory_builder_options.trajectory_builder_2d_options()
                    .imu_gravity_time_constant();
      extrapolators_.emplace(
          std::piecewise_construct, std::forward_as_tuple(trajectory_id),
          std::forward_as_tuple(
              ::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
              gravity_time_constant));
    }

     map的emplace方法,高效插入。http://en.cppreference.com/w/cpp/container/map/emplace

  • 相关阅读:
    【转】做好测试计划和测试用例工作的关键
    【转】RESTful Web Services初探
    最快排序和搜索算法的最简代码实现_转
    排序算法
    libevent简述
    linux异步IO--aio
    长志气戒傲气 必须时刻保持冷静
    LACP-链路聚合
    AM335x移植linux内核_转
    4种用于构建嵌入式linux系统的工具_转
  • 原文地址:https://www.cnblogs.com/yhlx125/p/8137885.html
Copyright © 2011-2022 走看看