You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.
What is the minimum number of operations you need to make all of the elements equal to 1?
The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.
The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.
Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.
5
2 2 3 4 6
5
4
2 4 6 8
-1
3
2 6 9
4
In the first sample you can turn all numbers to 1 using the following 5 moves:
- [2, 2, 3, 4, 6].
- [2, 1, 3, 4, 6]
- [2, 1, 3, 1, 6]
- [2, 1, 1, 1, 6]
- [1, 1, 1, 1, 6]
- [1, 1, 1, 1, 1]
We can prove that in this case it is not possible to make all numbers one using less than 5 moves.
题意:给一列 n 个数字 , 每次可以取相邻的两个数字 取最大公约数并替换 两者中的 任何一个数字 ,问想要吧所有的数字 变成 1
最少需要多少步
思路:如果 n 个数字里面 有 cnt 个 1 则每次让周围的数字 和 1 取最大公约数 , 并替换不是 1 的那个数字 ,
这样 最少需要 n - cnt 步 就可以完成目标
如果没有 1 ,则 用相邻的数字 取最大公约数 并且 替换 其中一个数字 与其他数字 取最大公约数直达出现最大公约数 是1 的情况 同是记下步骤 ,
并且 逐渐 维护 最小步数
#include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #include <limits> using namespace std ; #define maxn 3000 #define LL long long int n , k , y ; LL num[maxn] ; int total ; LL gcd(LL a , LL b ) { int temp ; while(b){ temp = b ; b = a % b ; a = temp ; } return a ; } int main() { while(~scanf("%d" , &n )){ int numbers = 0 ; for(int i=1 ; i<=n ; i++){ scanf("%lld" , &num[i]) ; if(num[i] == 1 ){ numbers ++ ; } } if(numbers){ printf("%d " , n - numbers ) ; continue ; } LL x , cnt , ans =INT_MAX ; for(int i=1 ; i<=n ; i++){ x = num[i] , cnt = 0 ; for(int j=i+1 ; j<=n ; j++){ x = gcd(x , num[j]) ; cnt ++ ; if(x == 1 ){ break ; } } if(x==1){ ans = min(ans , cnt + n-1 ) ; } } if(ans != INT_MAX ){ printf("%d " , ans ) ; } else { printf("%d " , -1 ) ; } } return 0 ; }