zoukankan      html  css  js  c++  java
  • Codeforces Round #446 (Div. 1) A题 . Pride

    A. Pride
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

    What is the minimum number of operations you need to make all of the elements equal to 1?

    Input

    The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

    The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

    Output

    Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

    Examples
    Input
    5
    2 2 3 4 6
    Output
    5
    Input
    4
    2 4 6 8
    Output
    -1
    Input
    3
    2 6 9
    Output
    4
    Note

    In the first sample you can turn all numbers to 1 using the following 5 moves:

    • [2, 2, 3, 4, 6].
    • [2, 1, 3, 4, 6]
    • [2, 1, 3, 1, 6]
    • [2, 1, 1, 1, 6]
    • [1, 1, 1, 1, 6]
    • [1, 1, 1, 1, 1]

    We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

     题意:给一列 n 个数字 , 每次可以取相邻的两个数字 取最大公约数并替换 两者中的 任何一个数字 ,问想要吧所有的数字 变成 1

       最少需要多少步

    思路:如果 n 个数字里面 有 cnt 个 1 则每次让周围的数字 和 1 取最大公约数 , 并替换不是 1 的那个数字 ,

       这样 最少需要 n - cnt 步 就可以完成目标 

       如果没有 1 ,则 用相邻的数字 取最大公约数 并且 替换 其中一个数字 与其他数字 取最大公约数直达出现最大公约数 是1 的情况   同是记下步骤 , 

       并且 逐渐 维护 最小步数

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <limits>
    
    using namespace std ;
    
    #define maxn 3000
    #define LL long long
    int n , k , y ;
    LL num[maxn] ;
    
    int total ;
    
    LL gcd(LL a , LL b ) {
        int temp ;
        while(b){
            temp = b ;
            b = a % b ;
            a = temp ;
        }
        return a ;
    }
    
    int main()
    {
        while(~scanf("%d" , &n )){
    
            int numbers = 0 ;
            for(int i=1 ; i<=n ; i++){
                scanf("%lld" , &num[i]) ;
                if(num[i] == 1 ){
                    numbers ++ ;
                }
            }
            if(numbers){
                printf("%d
    " , n - numbers ) ;
                continue ;
            }
            LL x , cnt , ans =INT_MAX ;
            for(int i=1 ; i<=n ; i++){
                x = num[i] , cnt = 0 ;
                for(int j=i+1 ; j<=n ; j++){
                    x = gcd(x , num[j]) ;
                    cnt ++ ;
                    if(x == 1 ){
                        break ;
                    }
    
                }
                if(x==1){
                    ans = min(ans , cnt + n-1 ) ;
                }
            }
    
            if(ans != INT_MAX ){
                printf("%d
    " , ans  ) ;
            } else {
                printf("%d
    " , -1 ) ;
            }
    
        }
    
    
    
        return 0 ;
    }
    View Code
  • 相关阅读:
    史上最简洁的handler原理解释
    handler解惑
    Http中get和post的区别
    使用软引用缓存Bitmap
    Request头和Response头
    DNS编程实验--域名与IP的相互转换
    CString与string
    C++ string占多少个字节测试
    java中类的继承性和多态性实例
    java寻找html文件中的标签
  • 原文地址:https://www.cnblogs.com/yi-ye-zhi-qiu/p/7941410.html
Copyright © 2011-2022 走看看