zoukankan      html  css  js  c++  java
  • HDU 2298(纯物理加解一元二次方程)

    Toxophily

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2555    Accepted Submission(s): 1416


    Problem Description
    The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and bridge, toxophily, deluxe ballrooms KTV rooms, fishing, climbing, and so on.
    We all like toxophily.

    Bob is hooked on toxophily recently. Assume that Bob is at point (0,0) and he wants to shoot the fruits on a nearby tree. He can adjust the angle to fix the trajectory. Unfortunately, he always fails at that. Can you help him?

    Now given the object's coordinates, please calculate the angle between the arrow and x-axis at Bob's point. Assume that g=9.8N/m.
     
    Input
    The input consists of several test cases. The first line of input consists of an integer T, indicating the number of test cases. Each test case is on a separated line, and it consists three floating point numbers: x, y, v. x and y indicate the coordinate of the fruit. v is the arrow's exit speed.
    Technical Specification

    1. T ≤ 100.
    2. 0 ≤ x, y, v ≤ 10000.
     
    Output
    For each test case, output the smallest answer rounded to six fractional digits on a separated line.
    Output "-1", if there's no possible answer.

    Please use radian as unit.
     
    Sample Input
    3
    0.222018 23.901887 121.909183
    39.096669 110.210922 20.270030
    138.355025 2028.716904 25.079551
     
    Sample Output
    1.561582
    -1
    -1
     解题报告:
    二分三分什么的好麻烦啊。。。。。。。。。。。。。。。。
    直接按照做物理题的思路:

    代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    const double PI=3.1415926535898;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            double x,y,v;
            scanf("%lf %lf %lf",&x,&y,&v);
            if(x==0)//考虑特殊情况
            {
                if(y==0)
                    printf("0.000000
    ");
                else
                    printf("%lf
    ",PI/2);
                    continue;
            }
            double t=x*x-4*(4.9)*(x*1.0/v*1.0)*(x*1.0/v*1.0)*(4.9*(x*1.0/v*1.0)*(x*1.0/v*1.0)+y);
            if(t>0)
            {
                double r;
                if(x>sqrt(t))
                {
                    r=(x-sqrt(t))/(9.8*(x/v)*(x/v));
                }else
                {
                    r=(x+sqrt(t))/(9.8*(x/v)*(x/v));
                }
                printf("%lf
    ",atan(r));
            }else
            {
                printf("-1
    ");
            }
        }
    }
     
     
     
  • 相关阅读:
    【bzoj4372】烁烁的游戏 动态点分治+线段树
    【bzoj3730】震波 动态点分治+线段树
    【bzoj3125】CITY 插头dp
    【bzoj2310】ParkII 插头dp
    【bzoj1187】[HNOI2007]神奇游乐园 插头dp
    【bzoj1814】Ural 1519 Formula 1 插头dp
    【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
    【bzoj3518】点组计数 欧拉函数(欧拉反演)
    【bzoj5099】[POI2018]Pionek 双指针法
    【bzoj4311】向量 线段树对时间分治+STL-vector维护凸包
  • 原文地址:https://www.cnblogs.com/yinbiao/p/8919686.html
Copyright © 2011-2022 走看看