zoukankan      html  css  js  c++  java
  • HDU 1018Big Number(大数的阶乘的位数,利用公式)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1018

    Big Number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 42715    Accepted Submission(s): 20844


    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
     
    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
     
    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.
     
    Sample Input
    2
    10
    20
     
    Sample Output
    7
    19
     
    Source
     
    分析:
    问你一个数的阶乘是多少位
    n比较大
    是大数问题
    一开始不知道写
    看了一下大佬的博客
     
    具体分析;
     一个正整数a的位数等于(int)log10(a) + 1
        假设A=n!=1*2*3*......*n,那么我们要求的就是
        (int)log10(A)+1,而:
        log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
        =log10(1)+log10(2)+log10(3)+......+log10(n)
     
    code:
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define max_v 105
    int main()
    {
        /*
        一个正整数a的位数等于(int)log10(a) + 1
        假设A=n!=1*2*3*......*n,那么我们要求的就是
        (int)log10(A)+1,而:
        log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
        =log10(1)+log10(2)+log10(3)+......+log10(n)
            */
        int n,t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            double sum=0;
            for(int i=1; i<=n; i++)
            {
                sum+=log10((double)i);
            }
            printf("%d
    ",(int)sum+1);
        }
        return 0;
    }
  • 相关阅读:
    「题解」:$Six$
    「题解」:$Smooth$
    AFO
    纪念——代码首次达到近50K(更新:78.8K 2019行)
    meet-in-the-middle 基础算法(优化dfs)
    莫队学习笔记
    树链剖分学习笔记
    常用数论模板
    图论模板
    高精度模板(结构体封装,重载运算符)
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9313368.html
Copyright © 2011-2022 走看看