zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence(裸LCS)

    传送门:

    http://acm.hdu.edu.cn/showproblem.php?pid=1159

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 47676    Accepted Submission(s): 21890


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
     
    分析:
    裸的LCS(最长公共子序列问题)
    code:
    #include<stdio.h>
    #include<string.h>
    #include<memory>
    using namespace std;
    #define max_v 1005
    char x[max_v],y[max_v];
    int dp[max_v][max_v];
    int l1,l2;
    int main()
    {
        while(~scanf("%s %s",x,y))
        {
            l1=strlen(x);
            l2=strlen(y);
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=l1;i++)
            {
                for(int j=1;j<=l2;j++)
                {
                    if(x[i-1]==y[j-1])
                    {
                        dp[i][j]=dp[i-1][j-1]+1;
                    }else
                    {
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                    }
                }
            }
            printf("%d
    ",dp[l1][l2]);
        }
        return 0;
    }
  • 相关阅读:
    gitlab web端使用
    1、gitlab的理论知识
    git命令
    gitlab web客户端的使用
    jenkins
    jenkins pipeline
    nginx
    ELK(+Redis)-开源实时日志分析平台
    OpenStack构架知识梳理
    Linux 下的dd命令使用详解
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9347975.html
Copyright © 2011-2022 走看看