zoukankan      html  css  js  c++  java
  • Python 之 numpy 和 tensorflow运算

    转自: https://www.cnblogs.com/liuq/p/9330134.html

    一、点乘与矩阵乘定义

    1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法

    若 w 为 m1 的矩阵,x 为 mn 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。

    若 w 为 mn 的矩阵,x 为 mn 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。

    w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算。

    2)矩阵乘 ---- 按照矩阵乘法规则做运算

    若 w 为 mp 的矩阵,x 为 pn 的矩阵,那么通过矩阵相乘结果就会得到一个 m*n 的矩阵。只有 w 的列数 == x的行数时,才能进行乘法运算

    3、numpy和tensorflow示例
    # numpy示例
    import numpy as np
    w = np.array([[0.4], [1.2]])
    x = np.array([range(1,6), range(5,10)])
    
    y1 = w*x  #点乘
    y2 = np.dot(w,x) #矩阵乘
    
    # tensorflow示例
    import tensorflow as tf
    w = tf.Variable([[0.4], [1.2]], dtype=tf.float32) # w.shape: [2, 1]
    x = tf.Variable([range(1,6), range(5,10)], dtype=tf.float32) # x.shape: [2, 5]
    y1 = w * x     # 点乘,等同于 y = tf.multiply(w, x)   y.shape: [2, 5]
    y2 = tf.matmul(w, x) #矩阵乘
    

    2、矩阵加法,broadcasting机制

    z1 = tf.get_variable(name='v1', shape=[128, 32, 256], dtype=tf.float32, initializer=tf.glorot_uniform_initializer())
    z2 = tf.get_variable(name='v2', shape=[128, 32, 1], dtype=tf.float32, initializer=tf.glorot_uniform_initializer())
    add_vec = z2 + z1  # shape=(128, 32, 256)
    

    与矩阵点乘类似,维度不完全相同的也可以相加,但要求同点乘类一样,这种隐式的复制向量b到很多位置的办法,叫做broadcasting。

  • 相关阅读:
    【Henu ACM Round#17 A】Simple Game
    【Henu ACM Round #12 E】Thief in a Shop
    【Henu ACM Round#16 D】Bear and Two Paths
    【Henu ACM Round#16 A】 Bear and Game
    P4824 [USACO15FEB]Censoring (Silver) 审查(银)
    P4001 [BJOI2006]狼抓兔子
    P2444 [POI2000]病毒
    P3966 [TJOI2013]单词
    P3796 【模板】AC自动机
    P4574 [CQOI2013]二进制A+B
  • 原文地址:https://www.cnblogs.com/ying-chease/p/14248778.html
Copyright © 2011-2022 走看看