zoukankan      html  css  js  c++  java
  • ThreadPoolExecutor 线程池的实现

    ThreadPoolExecutor继承自 AbstractExecutorServiceAbstractExecutorService实现了 ExecutorService 接口。

    顾名思义,线程池就是保存一系列线程的“容器”。

    在ThreadPoolExecutor的实现中,将这些线程保存在一个HashSet中

         private final HashSet<Worker> workers = new HashSet<Worker>();

    其中的Worker是一个内部类,在后面会讲到。

    另外有一个BlockingQueue用于保存提交到线程池的任务

    private final BlockingQueue<Runnable> workQueue;

    corePoolSize和maximumPoolSize是ThreadPoolExecutor中的两个字段,分别表示线程池的核心线程数和最大线程数。

    当我们向线程池提交一个任务时,线程池会做如下判断:

    • 如果线程池中的线程数小于corePoolSize,创建线程执行任务;
    • 否则,如果任务队列未满,将任务保存在任务队列中;
      • 否则,如果线程池中线程数小于maximumPoolSize,创建线程执行任务;
        • 否则,按照策略执行无法执行的任务。

    下面是ThreadPoolExecutor的构造方法:

    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }

    回到 Executors 构建线程池的方法

    • 构建固定大小的线程池
      public static ExecutorService More ...newFixedThreadPool(int nThreads) {
          return new ThreadPoolExecutor(nThreads, nThreads,
                                              0L, TimeUnit.MILLISECONDS,
                                              new LinkedBlockingQueue<Runnable>());
      } 
    • 构建缓冲池,需要的时候才新建线程,新建出来的线程不会被回收而是用于后面的重用
       
      public static ExecutorService More ...newCachedThreadPool() {
          return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                             60L, TimeUnit.SECONDS,
                                             new SynchronousQueue<Runnable>());
      }

    再看ThreadPoolExecutor的execute()方法,该方法是Executor接口定义的方法(ExecutorService接口继承自Executor):

        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             * 当池子大小小于corePoolSize就新建线程,并处理请求
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             * 如果任务可以被插入到workQueue,需要复查当前运行状态
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             * 如果任务无法被插入到workQueue,则调用reject方法
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }    

    其中, reject(command)就是任务无法执行,按照预先定义的方法执行无法执行的任务。

    addWorker是将提交任务的核心方法:

        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                final ReentrantLock mainLock = this.mainLock;
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int c = ctl.get();
                        int rs = runStateOf(c);
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }

    再看一下线程池中的工作线程:

        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
  • 相关阅读:
    Git第一次新建项目添加ssh key
    第一次将本地项目同步到git服务器
    python实现差分隐私Laplace机制
    利用皮尔逊相关系数找出与目标最相关的特征(Python实现)
    corrcoef函数python_用Numpy计算Python中的Pearson相关系数
    Python Numpy库 numpy.corrcoef()函数讲解
    皮尔森相关系数(Pearson correlation coefficient)
    Python三种方法计算皮尔逊相关系数(Pearson correlation coefficient)
    特征选择 (feature_selection)
    基于模型的特征选择详解
  • 原文地址:https://www.cnblogs.com/yitong0768/p/4557644.html
Copyright © 2011-2022 走看看