zoukankan      html  css  js  c++  java
  • 复习随笔

    复习

    配合yizimi的板子库食用效果更佳。

    前言

    高中过后一直没有复习,大一要打天梯赛时才想起来复习。这个是个人的算法复习过程,尽量按照顺序进行复习,主要顺序是按照我自己的板子库的顺序复习。也算是对板子库的一个解释吧。

    一、数论

    1.快速幂

    主要的思路就是分治,当幂数过大时,一般采用幂数2进制寻找幂数底数相乘。时间复杂度(O(logn))

    2.欧拉函数

    欧拉函数(varphi(x)) 返回的是小于x的自然数中与x互质的数的个数,我们有:

    [varphi(x) = x * prod_{i = 1}^{n} (1 - p_i) ]

    一般利用费马小定理用于求逆元。

    3.乘法逆元(线性求逆)

    线性求逆的推导:

    (i)在模(p)意义下的逆元为(inv[i]),设 (k *i + r = p), 所以 (k* i + r equiv 0 (mod p)),移项得 (k *i equiv -r (mod p)) ,则 (frac{1}{i} equiv -frac{k}{r} (mod p)) ,则 (frac{1}{i})(inv[i]) ,即 (inv[i] equiv k - k* inv[r] (mod p)) ,因为(r < i) 所以可以递推。

    4.线性筛素数

    (1)埃式筛法

    不是理论上的(O(n)),时间复杂度是(O(nloglogn)),因为(lim_{n o infty}loglogn = c) 而且其常数较小,写起来思路较简单,故仍被广泛利用。主要思路是排除合数,未被标记的数即为素数

    (2)欧拉筛法

    理论上真正的(O(n))算法,是从欧拉筛法的基础上只被它的最小质因子筛选一次,避免筛选重复。

    5.扩展欧几里得

    证明:
    假设有$$ax_1 + by_1 = gcd(a, b)$$成立,则由欧几里得算法得:$$gcd(a, b) = gcd(b, a mod b)$$又有:$$bx_2 + (a mod b)y_2 = gcd(b, a mod b)$$则合并等式得:$$ax_1 + by_1 = bx_2 + (a mod b)y_2$$

    [a mod b = a - lfloor a/b floor*b ]

    [ax_1 + by_1 = ay_2 + b*(x_2-lfloor a/b floor)y_2 ]

    最后有

    [x_1 = y_2 \ y_2 = x_2 - lfloor a/b floor y_2 ]

    因为(gcd(a, 0) = a),即在$ b=0$ 时有 (x = 1, y = 0)
    然后回推即可。

    6.单个数求逆元

    在同余的情况下,相除x和相乘x的逆元是等价的。当然,同余是不可能去除一个数x,我们就去乘其逆元。一般运用费马小定理,或线性求逆,或扩展欧几里得算法来计算。

    7.矩阵加速

    利用矩阵乘法的特性和其矩阵快速幂的特性来加速递推式的递推,不过要求线性递推,可以将(O(n))优化成(O(logn))

    8.整除分块

    很少用到这个知识,就是当进行整除的时候,总有一个区间整除一个数的时候答案相同,也包括根号等计算,可以用此信息来缩小计算时间。

    9.博弈论

    大坑未填,只会一个计算方法,不知道原理

    二、图论

    1.并查集

    并查集通过记录父亲节点来确定两个数字是否在一个集合,可以通过链表的方法,记录的父亲关系更全面,或者用路径压缩,更快的确定二者所在的集合是否相同。时间复杂度一般为(O(alpha(n)))。对于合并,可以采用放在小子树的方法来缩短树高,也可以用随机合并的玄学方法来进行合并,不会被卡。毕竟你也不知道会怎么合并

    2.Kruskal算法(克鲁斯卡尔算法, 最小生成树算法)

    主要思想是贪心算法,可以将每一条边按长度进行排序,然后采用并查集来查询和合并贪心的找最短的长度的边进行合并,注意不能连接已经在一个集合中的点了。
    理论时间复杂度为(O(mlogm))

    3.Dijkstra算法(单源最短路算法)

    主要使用DP思想。主要的思路是松弛操作,也就是

    [dis[v] = dis[x] + w ]

    我们每次寻找最短的dis[x]进行更新,可以运用优先队列优化,时间复杂度(O(nlogn)),也可以用线段树维护最短的点,时间复杂度相同,就是空间占的较大。

    4.SPFA算法(单源最短路径算法)

    传说中已经死了的算法,但是SPFA还是有很大的用途,来源于Bullman Ford算法,就是每次更新松弛一个距离,就将这个距离放入队列,然后以便通过这个点松弛其他的点。时间复杂度(O(me))(实际是(O(玄学))

    SPFA用于求负环,网络最大流,最小费用最大流等等,所以人们仍然没有放弃使用这个算法。

    5.Floyd算法(多源最短路径)

    通过枚举第一个点,第二个点,和其中经过的第三个点,将每两个点的最短路径松弛出来,时间复杂度(O(n^3))

    6.二分图染色

    二分图染色是一种用来判断给定图是否为二分图的方法,在图上不停的BFS或DFS,并进行染色,保证相邻两点颜色一定不同。

    一般会结合DP进行考察,一般结合DAG上的推论来考察。

    本部分参考关于二分图染色的几点总结

    7.拓扑排序

    采用BFS的方法,将节点按照BFS的顺序排序,并可同时进行出度和入度的计算。

    8.tarjan求强联通分量

    在有向图中,强联通指两个节点可以互通,若一个图中的所有点都可互通,那么这个图叫做强联通图。我们在一个有向图中,寻找极大的强联通子图的大小就是强联通分量。

    tarjan基于DFS,其中用(dfn[i])来作为时间戳(被搜到的次序),一旦某个点被DFS到,这个时间戳就不再改变,而(low[i])指在该子树中,且仍在栈里的最小时间戳,像是确立了一个关系,(low[i])相同的点在同一个强联通分量中。

    首先从每个没有记时间戳的点开始DFS,我们根据(1 - N)的顺序来进行,所以我们回溯的时候(low[])记录路径上最小的时间戳,来确定强联通分量。

    时间复杂度(O(n))

    9.树分治

    (1)点分治

    点分治是处理树上路径的工具,点分治的精髓是将一颗树拆分成许多棵子树处理,并不断进行。

    我们分治的方法是从树的重心开始分(这样的话时间复杂度会降低到(O(logn))

    求解树的重心的方法:
    更新(sze[i])表示以i为根节点的子树的节点数量(即子树大小),(maxp[i])表示i节点为根的子树中的最大子树,在DFS中的回溯中进行DP,求maxp的时候需要用到容斥原理

    先对当前的节点进行更新答案,然后进行分治下方节点答案,此中用容斥定理来除去不合理的答案,……

    (挖坑待填)

  • 相关阅读:
    htmlcleaner使用及xpath语法初探
    薛兆丰 经济学思维:只给你讲地道的经济学思维 得到订阅专栏 下载
    解决web项目存在多个log4j.properties配置文件,导致日志级别配置不生效问题
    RC4被JDK8默认禁用导致腾讯QQ邮箱无法访问
    JavaMail SMTP服务器发送邮件程序示例 java通过dns服务器解析ip地址
    javamail-android
    使用POP3协议接收并解析电子邮件(全)
    [API]使用Blueprint来高雅的编写接口文档 前后端api文档,移动端api文档
    优酷真实视频地址解析——2016年9月20日 优酷视频下载工具
    记录思想分享知识编辑器 Markdown 编辑阅读器
  • 原文地址:https://www.cnblogs.com/yizimi/p/13948418.html
Copyright © 2011-2022 走看看