zoukankan      html  css  js  c++  java
  • HDU 5305(Friends-暴搜)

    Friends

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1717    Accepted Submission(s): 854


    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements.
     

    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases.

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once.
     

    Output
    For each testcase, print one number indicating the answer.
     

    Sample Input
    2 3 3 1 2 2 3 3 1 4 4 1 2 2 3 3 4 4 1
     

    Sample Output
    0 2
     

    Author
    XJZX
     

    Source
     

    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5395 5394 5393 5392 5391 
     

    暴搜




    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<ctime>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (100000007)
    #define MAXN (100+10)
    #define MAXM (100+10)
    typedef long long ll;
    ll mul(ll a,ll b){return (a*b)%F;}
    ll add(ll a,ll b){return (a+b)%F;}
    ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
    void upd(ll &a,ll b){a=(a%F+b%F)%F;}
    int n,m;
    int e[MAXM][2];
    int degree[MAXN],totdeg[MAXN];
    ll ans;
    bool check(int x,int y) 
    {
    	return  ( ( totdeg[x]||( !degree[x] ))   &&  ( totdeg[y]||( !degree[y] ))  );
    
    }
    void dfs(int p)
    {
    	if (p==m)
    	{
    		For(i,n)
    			if (i!=e[p][0]&&i!=e[p][1]&°ree[i]) return ;
    		if (degree[e[p][0]]==degree[e[p][1]]&&abs(degree[e[p][0]])==1) {
    			ans++;
    		} 
    		return ;	
    	}
    //	if (p==m+1) 
    //	{
    //		ans++;
    //		return;
    //	}
    	int x=e[p][0],y=e[p][1];
    	totdeg[x]--;totdeg[y]--;
    	degree[x]++;degree[y]++;
    	if (check(x,y)) dfs(p+1);
    	degree[x]-=2;degree[y]-=2;
    	if (check(x,y)) dfs(p+1);
    	degree[x]++;degree[y]++;
    	totdeg[x]++;totdeg[y]++;
    }
    int main()
    {
    //	freopen("F.in","r",stdin);
    	
    	int T;cin>>T;
    	while(T--) {
    		ans=0; MEM(degree) MEM(totdeg)  
    		cin>>n>>m;
    		For(i,m) scanf("%d%d",&e[i][0],&e[i][1]),totdeg[e[i][0]]++,totdeg[e[i][1]]++;
    		
    		bool flag=0;
    		For(i,n) if (totdeg[i] & 1) {
    			flag=1;puts("0");break;
    		}
    		if (flag) continue;
    		
    		if (m) dfs(1); else ans=1;
    		printf("%lld
    ",ans);
    	}
    	
    	return 0;
    }
    




  • 相关阅读:
    为什么利用多个域名来存储网站资源会更有效?
    事件绑定和普通事件的区别
    浏览器地址栏输入一个URL后回车,将会发生的事情
    JS数据类型及数据转换
    JS中的NaN和isNaN
    大数据的结构和特征
    系统重装后,如何重新找回hexo+github搭建的博客
    javascript操作符
    html头部
    html中链接的使用方法及介绍
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6912612.html
Copyright © 2011-2022 走看看