P1164曹冲养猪
描写叙述
自从曹冲搞定了大象以后,曹操就開始捉摸让儿子干些事业,于是派他到中原养猪场养猪,但是曹冲满不高兴。于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。
举个样例。假如有16头母猪,假设建了3个猪圈。剩下1头猪就没有地方安家了。假设建造了5个猪圈,但是仍然有1头猪没有地方去,然后假设建造了7个猪圈,还有2头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总。你该怎么办?
格式
输入格式
第一行包括一个整数n (n <= 10) – 建立猪圈的次数,解下来n行,每行两个整数ai, bi( bi <= ai <= 1000), 表示建立了ai个猪圈。有bi头猪没有去处。你能够假定ai,aj互质.
输出格式
输出包括一个正整数,即为曹冲至少养母猪的数目。
例子1
题目大意:
找出最小的x使得x%m[0]=r[0],x%m[1]=r[1]....解题思路:
中国剩余定理(又称孙子定理)是用来求解例如以下方程组的:
x % m[0] = r[0]
x % m[1] = r[1]
x % m[2] = r[2]
x % m[3] = r[3]
......
(求解的条件是m数组两两互质)
然后我们设M=m[0]*m[1]*m[2]*......*m[n-1]。由于m数组两两互质。所以M/m[i]与m[i]的最大公约数为1。即gcd(M/m[i],m[i])=1。
所以我们要先找到一个数v使得:
(M/m[i]) * v % m[i] = 1
(M/m[i]) * v = 1 (mod m[i])……………………①
因为题目规定。模m[i]的结果不是1,而是r[i]
所以等式两边要同一时候乘上r[i]。得:
(M/m[i]) * v * r[i]= r[i] (mod m[i])
那么这个(M/m[i]) * v * r[i]就是终于答案x的一部分。
求(M/m[i]) * v * r[i],我们仅仅须要求v就可以。
那么我们怎样求得v呢?
观察①式。发现我们仅仅须要求满足
(M/m[i]) * v + m[i] * t = 1……………………②
的v值就可以(当中t为随意整数)。
观察②式,发现事实上②式就是(M/m[i]) * v + m[i] * t = gcd(M/m[i],m[i]),所以运用拓展欧几里得就可以求出v。
參考代码:
#include<map> #include<stack> #include<queue> #include<cmath> #include<vector> #include<cctype> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const double eps=1e-10; const int INF=0x3f3f3f3f; const int MOD=1e9+7; const int MAXN=50; typedef long long LL; int n,m[MAXN],r[MAXN]; LL exgcd(LL a,LL b,LL& x,LL& y) { if(b==0) { x=1; y=0; return a; } LL r=exgcd(b,a%b,x,y); LL t=y; y=x-a/b*y; x=t; return r; } LL china(int* m,int* r,int n) { LL M=1,re=0,x,y; for(int i=0;i<n;i++) M*=m[i]; for(int i=0;i<n;i++) { LL w=M/m[i]; exgcd(w,m[i],x,y); re=(re+x*w*r[i])%M; } return (re+M)%M; } int main() { scanf("%d",&n); for(int i=0; i<n; i++) scanf("%d%d",&m[i],&r[i]); printf("%lld ",china(m,r,n)); return 0; }